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I ABSTRACT

.... ._. numerical model has been developed for investigating boundary layer

I transition control for a three-dimensional flat plate boundary layer. Control of

a periodically forced boundary layer in an incompressible fluid is studied using

I surface heating techniques. The spatially evolving boundary layer is simulated,

I The Navier-Stokes and energy equations are integrated using a fully implicit finite
difference/spectral method. The Navler--Stokes equations are in vorticity-velocity

I form and are coupled with the energy equation through the viscosity dependence
on temperature.

I Both passive and active methods of control by surface heating are in-

vestigated. In passive methods of control, wall heating is employed to alter the

I stability characteristics of the mean flow. Both uniform and nonuniform surface

i temperature distributions are studied. In the active control _jvestigations, tem-
perature perturbations are introduced locally along finite heater strips to directly

I attenuate the instability waves in the flow. A feedback control loop is employed
in which a downstream sensor is used to monitor wall shear stress fluctuations.

I Passive control of small amplitude two--dimensional ToUmien-Schlichting

waves and three--dimenslonal oblique waves are numerically simulated with both

I uniform and nonuniform passive heating applied. Stron_ xed.u_:tions in both am-

plitude levels and amplification rates are achieved. Active control of small am-

I plitude two-dimensional and three-dimensional disturbances is also numerically

I simulated. With proper phase control, in phase reinforcement and out of phase
attenuation is demonstrated.

I A receptivity study is performed to study how localized temperature

perturbations are generated into ToUmien-Schlichting waves. It is shown that

I
I
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!
narrow heater strips are more receptive in that they maximize the amplitude

I

i level of the disturbances in the low. It is also found that the local temperature I

fluctuations cause mainly a strong normal _'a_ent in spanwlse vorticity.

Control of the early stages of the nonlinear breakdown process is also i

investigated. Uniform passive control is applied to both the fundamental and sub- I
harmonic routes to turbulence. A strong reduction in amplitude levels and growth

rates results. In particular, the three-dimensional _-owth rates are significantly i
reduced below the uncontrolled levels. Active control of the fundamental break-

down process is also numerically simulated. Control is ac_eved using either a i

two--_mensional or three-dimensional control input. I

[
[
I
i
i
I
I
I
I
i
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I CHAPTER 1

I INTRODUCTION

I Control of the laminar-turbulent transition process is of considerable

I interest in aerodynamics and hydrodynam/cs. Delay or prevention of transition
significantly reduces the viscous drag, while acceleration of transition may be de-

I sired to delay separation, to enhance m/xmg for combustion and chemical reactions

or to simulate higher Reynolds number flows in an experimental facility. A sizable

I decrease in the viscous drag forces has the potential to significantly reduce fuel

I consumption and allow greater range and speed. According to Bushnell (1983),
drag caused by the formation of the viscous boundary layer accounts for approx-

I imately 50% of the drag on transport aircraft and surface ships and 70% of the
drag of underwater bodies. Hefner (1988) recently pointed out that as much as

I 50% of the fuel burned by commercial and general aviation aircraft is required to

overcome the friction or viscous drag, and fuel costs could be reduced by as much

I as 2 to 5% with even modest reductions in viscous drag. This slight reduction in

the viscous drag could save the U.S. airlines $200 to $500 million a year.

I There are basically two approaches to control the transition process. The

I first approach is based on the idea of changing the stability characteristics of the
base flow. The critical Reynolds number at which the flow becomes unstable

I is increased or reduced depending on what is being done to the base flow. This
approach is characterized as passive control. The second approach to influence the

I transition process is active control in which the disturbance flow resulting from

the instability of the base flow is directly influenced using wave superposition

I techniques. Before discussing these difl'eren_, approaches to transition control, a

short review of the boundary layer transition process is given.!
!
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1.1 Boundary Layer Transition I

In low disturbance boundary layer flows, the Fast stage of the transition to

turbulent motion begins with the development of the two-dimensional ToUmien- I

Schllchting _'aves. These waves become amplified beyond a critical Reynolds num- I
ber for which the base flow becomes unstable to periodic disturbances. This stage

of transition, known as primary instability, has been studied by a consideration of I

the stability of small amplitude disturbances of the form of a travelling wave:

I
u'(x,t)= a(y)ei(°'-a') (1.1)

where a is the streamwise wavenumber, _ is the frequency, u is the two--dimensional I

_,elocity vector u - [_,_], and x is the two-dlmensional position vector x - [z,y]. I
Both a and 3 are in general complex. The perturbation velocity field of Equation

(1.1) is substituted into the linearized equations of motion and a fourth-order I

eigenvalue problem results:

I
-i - + (1.2)

I
where the prime denotes differentiation with respect to y, c is the propagation

speed (c= _), Re is the Reynolds number, and U = U(y) is the mean velocity I

profile, assumed parallel. Equation (1.2) is the Orr-Sommerfeld equation derived

independently by Qrr (1906) and Sommerfeld (1908). Although, in general, a and I

are complex, two special cases result with either a or/3 purely real. Given a

Re and a = a_, the eigenvalue _ is complex and the Orr-Sommerfeld equation I

describes a temporally growing or decaying wave with a growth rate of/3i. In the I
second case, the frequency _ = _, is purely real and for a given Re, the eigenvalue a

is complex and represents a spatirdly growing or decaying wave with a growth rate I

of -ai. The eigensolutions of Equation (1.2) are usually represented by a neutral

I
!
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stability curve as shown in Figure 1.1. This neutral curve represents the spatial

stability diagram of a boundary layer on a flat plate. The neutral curve separates

the parameter space into stable and unstable regions. The flow is unstable inside

the neutral curve and the disturbances grow exponentially. Outside the neutral

curve, the flow is stable and the disturbance waves decay exponentially, This

behavior was first demonstrated by the classical experiments of Schubauer and

$kramstad (1948). In these experiments the evolution of Tollmlen-Schlichtin 8

waves was observed for both controlled and natural transition. In the case of

controlled transition, the Tollmien-Schllchting waves were excited by a vibrating

ribbon subjected to oscillations at a fixed frequency. For the case of natural

transition, the Tollmien-Schllchting waves were excited by the natural background

disturbances that are always present in a real flow environment.

The existence of the disturbances predicted by linear theory is well es-

tablished. However, it is not yet clearly understood how the two--dimensional,

low frequency waves lead to the complicated three--dimensional, high frequency

phenomena of turbulence. As the amplitude of the instability waves exceeds a cer-

tain threshold value, nonlinear effects become appreciable and three-dimensional

structures appear. The nonlinear effects are manifested in the much larger growth

rates of some of the disturbances, which are invariably three--dimensional. Two--

dimensional nonlinear effects alter the _-,rowth rates and the region of unstable

parameter space only slightly and are unable to induce transition.

A more complete understanding of the transition process requires some

account of the origin of three-dimensionality in the flow. Squire (1933) was able

to relate the stability of three-dimensional disturbances in the form of oblique

waves. Considering an oblique wave of the form

u'(x,t) = a()e (x.3)
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where _, is the spanwise wavenumber, u is the three-dimensional velo_ty vector l

u = [u, n,w], and x is the three-dimensional position vector x - [z, y, z], leads to

the three-dlmensional Orr-Sommerfeld equation for a two-dimensional base flo_-: I

(U_c)[8,, (a2 +,72)8]_U,,_ = -i [8,,,, 2(a2 +7=)_" +(,..,2 +.7=)28] (1.4) I,',,Re

Equation (1.4) becomes I

C_-_)[8"-_] -u"_= _-it_"""-2___"+_] (1.5) |

which is the same equation for a two-dimensional disturbance with wavenumber 1

and Reynolds number 7_. Thus a three-dimensional disturbance is exactly

similar to that of a two-dimensional disturbance with wavenumber _ and Reynolds I

number Re. The result of this analysis is that the minimum critical lteynolds I
number occurs for purely two-dimensional disturbances, i.e. 7 = 0. It was at

least partly due to this analysis that few investigations into the three-dimensional I

aature of boundary layer transition were conducted.

The occurrence of the three-dlmensionrJ phenomena was observed ex- I

perimentally in detail by KAebanotf, Tidstrom, and Sargent (1962) and also by

Kovasznay, Komoda, and Vasudeva (1962). The three-dlm_nsional structure that 1
evolves is characterized by spanwise alternating peaks and valleys, or regions of I
enhanced and reduced wave amplitude, and an associated system of streamwise

vortices. The peak-vaUey structure is ordered in mat peaks follow peaks and val- I

leys follow valleys. The spanwise wavelength, _=, is generally somewhat smaller

I
I
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I than the stresmwise wavelength, )_. The growth rates at the peak positions ate

I much larger than those for the primary instability. As the three-dimensional struc-
tures evolve, high-shear layers and highly inflectional velocity distributions .%rm

I at the peak positions. Small-scale velocity fluctuations, or _spikes', develop from

the shear layer at a much higher frequency than the primary wave, which are the

I first signs of turbulence. This sequence of events leadlu 8 to turbulence is called

i fundamental or K-type breakdown after Klebano/[ and his coworkers (1962). Her-
bert (1985) has proposed a linear secondary mstahility theory that predicts an

I instability of this type. In Herbert's theory, the temporal concept is used in which
the flow is assumed periodic in the streamwis¢ direction. The Unear stability with

I respect to small sp_nwise periodic three-dimensional disturbances is studied. The

basic flow is comprised of the Blasins boundary layer and a TollmJen-Scl_chting

I wave of finite amplitude. Herbert's theory was able to show the essential features

i of the early stages of the secondary instability process. In addition, numerical
simulations based upon the temporal stability model have been made by Wray

I aud Hussani (1984), Laurien an:i Kleiser (1985), and Spalart and Yang (1986) to
simulate this K-type transition. In these simulations the disturbances grow in

I time as opposed to the spatial growth of the experiments, hut the results _re con-

sistent with the basic flow characteristics of the experiments. Spatial simulations,

I which more closely model the three--dimensional experiments of Klebanoff et al.

I (1962), have been conducted by Fasel, Rht, and Konzelmann (1987) using the
complete Nav/er-$tokes equations. Their results are in excellent agreemenL with

I the experimental measurements.

The ordered peak-valley system does not constitute the only one which

I has been encountered. Only recently a second route to tt_usition in the boundary

i layer has been observed by Kachanov and Levchenko (1984), Saric, Kozlov, and

!
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Levchenko (1984), and Saric and Thomas (1983). This route is characterized by I

subharmonic three-dimensional disturbances in which the peaks and valleys are I
staggered. The streamwise period of the three-dimensional structures is twice

the period of the fundamental wave. The experiments indicate the subharmonic I
breakdown occurs for low and intermediate amplitudes of the two-dimensional

wave, while the K-type occurs for higher amplitudes. Craik (1971) and Herberz l

(1984) have proposed theories that predict the subharmonic type of instability.

Cralk (1971) investigated the interaction of a resonant triad consisting of a low- I

amplitude two--dimensional wave and two oblique waves, while Herbert's linear I
secondary instability theory (1984) describes the flow patte_'_,s at intermediate am-

plitude levels. In Craik's theory (1971),a two--dimensional Tollmien-Schlichtln 8 l

wave is present with the form

l
= (1.6)

I
where _2D is the referencephase.In addition,two three-dimensionalwavesof the

form I

U_D±(X,L)--_,D±(y)ei("=/2±'y=-_'/2+_v±12) (1.7) l

aresuperimposedonthetwo-dimensionalwave,where7 isth,"vanwisewavenum-

berand _3D isthethree--dimensionalphase.A quadraticnonlinearityofU_D + I

and U_D- willbe resonantwiththefundamentaltwo-dimensionalwave U_D if

the initial phase is synchronized (_D = _3D+ -- _SD-) and if U_D 4. are subhar- I

molliCSof U_D and have the same phase speed. For this staggered peak-valley I
structure, Saric and Thomas (1984) observed that the spanwise wavelength, A,,

islargerthanthestreamwisewavelength,A,,by about50%. Thissubharmonic l

structureappearsforlow amplitudelevelsofthetwo-dimensionalwave(,-,0.3%

l
l
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I at Branch II of the neutral curve, according to Saric and Thomas (1984)), and is

I called a C-type structure after Craik's resonant triad theory (1971). At slightly
higher amplitude levels (0.3% to 0.6%), a different subharmonlc structure appears

I in which _, is larger than )_, by about 50% (Saric and Thomas (1984)). This

pattern was explained by the l_near secondary instability theory of Herbert (1984)

I and is called an H-type structure. Laurien and Kleiser (1985) and Spalart and

Yang (1986) have also shown the subharmonic route to transition with their tem-

I poral numerical models. In addition, the spatial simulations of Fasel, PAst, and

i Konzelmann (1987) have predicted the subharmonic breakdown and their results
are in very good agreement with the experimental measurements of Kachanov and

I Levchenko (1984).

For small ampl{tude disturbances, the Tollmien-Schlichting regime covers

I the largest downstream distance of the entire transition region. For the technical

application of transition control, this region is particularly amenable to maaipula-

I tions of the transition process. In the early nonlinear stages of transition, the flow

I is still smooth and thus easier to study than later strongly nonlinear stages. Full
transition is inevitable once the strongly nonlinear stage has been reached. Thus

I efforts to prevent or delay transition applied at the early stages should prove more
successful.

I 1.2 Passive Control

I In passive methods of control, the stability characteristics of the base

flow are altered. Several techniques have proven to be effective for passive control

I and can be easily identified by examining the boundary layer momentum equation,

including the viscosity variation with temperature,/_ - _(T):

I
P_"+P"_ +P" = -d-_+ _" _' " (1.8)I

I
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Applying Equation (1.8) at the wall of the plate and rearranging yields I

dp dp aT @I, + p_,ffi0 =/Jyffi0 (1.9)
-- _ y=O y=O yffiO y=O _ffiO

where the ch_,_inrule for the viscosity dependence on temperature has been invoked. I

As shown by Lord Rayleigh (1880), a v-_locity profile that lacks an inflection point

throughout is inviscidly stable, i.e. I

|_- < 0 ; 0 _<y _<oo. (1.10)

The Blaslusboundary layerdoes not have a pointof inflectionand thus isin- I
viscidlystable._#[oregenerally,thestabilityof a velocityprofileimprovesas its

second derivative near the wall becomes more negative. It is readily seen that a I

favorable pressure gradient (_---P< O), wall suction (_y=. < 0), heating in water !
> 0 tend to

<0 , and cooling in air _>0, _ y=o_<o, _ ,=o

Imore negatiw providing a stabilizing etfect to the flow.
y----@

lizing laminar boundary layers dates back to the 1930's. Research in the area of

rM laminar flow airfoils. Extensive laminar flow control by suction was achieved

in _ght tests in the 1960', . described by Antonato. (19661, Whites, Sudderth, I
and Wheldon (1966), Pfenninger and Reed (1966), and Nenni and Cluyas (1966).

These flight experiments showed that extensive laminar flow could be achieved I

aircraft are given by Wa8ner and Fischer (1983). The current state of linear sta-

bility theory as applied to transition prediction and passive laminar flow control I
system design for aerodynamics has been reviewed by Bushnell and Malik (1985).

I
I
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I According to this review article, substantial progress has been made in pressure

gradient laminar flow control for subsonic applications and is currently in use, but
questions concerning maintenance and reliability for the case of suction control re-

J problem application of suction is that additional disturbances
main. One with the

can be introduced into the boundary layer at the suction slots. An experimental

l investigation of the boundary layer with suction and blowing applied has been

i conducted by $aric and Reed (1983) in which the stabilizing effect of suction was
evident. In addition to the use of pressure gradient and suction as transition mod-

l ifiers, Reshotko (1979) has shown in a study that drag reductions are possible for
a hydrogen fueled aircraft by using the fuel to cool selected aerodynamic surfaces

I on its way to the engines.

The effects of passive heating were investigated as early as 1946 by Liep-

l mann and FUa (1946) in which they experimentally showed that heating in air

l hastens transition. Hauptmann (1968) used a perturbation procedure to pre-
dict appreciable stabilization in water and slight destabilization in air for small

I variations in viscosity. The first numerical results of heated and cooled water

boundary layers were conducted by Wazzan, Okamura, and Smith (1968, 1970a,

l 1970b). They formulated the linear stability problem to include the effects of

viscosity variation with temperature in the base flow and showed neutral stab/l-

l ity curves for several levels of heating and cooling. Lowell (1974) reformulated

I the heated boundary layer linear stability problem by including all fluid property
variations in the boundary layer along with the disturbance energy equation, thus

I predicting fluid property fluctuations well fluctuations. Lowell
as as temperature

(1974) found his results to be somewhat insensitive to the thermal disturbances

I and viscosity the dominant property. The stabilization of the water boundary

l layer has been shown experimentally by Strazisar, Reshotko, and Prahl (1977),

I
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I

Barker and Jennings (1977), Barker (1979), and Nosenchuck (1982). Barker and I

Jennings (1977) and Barker (1979) studied the boundary layer flow on the in-

side of a cylindrical tube and found a considerable increase in transition Reynolds

number with heating. Nosenchuck (1982) found the same overall trends as Barker I

and Jennings (1977) and Barker (1979), but Nosenchuck_s results (1982) were less
am

stable, which was attributed to a slight favorable pressure, gradient in the flow I

tube. The results of Strazisar, Reshotko, and Prahl (1977) show that as wall |
heating is increased the minimum critical Reynolds number at which the flow be- •

comes unstable increases, the disturbance growth rates decrease, and the region I
g

of unstable frequencies decreases. These trends are consistent with the numeri-

cal analysis of Wazzan, Okurmura, and Smith (1968, 1970a, 1970b) and Lowell I

(1974). Differences in the experimental and numerical results were attributed to
a

nonparallel effects. EI-Hady and Nayfeh (1979) have performed _ nonparallel sta- i

bility analysis using the method of multiple scales and show that, when nonparallel •

effects are taken into _tccount, better agreement with the experimental results can

be reached. Bestek, Dittrich, and Fuel (1987) have numerically studied passive I

control by surface heating. The two-dimensional Navler-Stokes and energy equa-

tions were solved for incompressible flow using the spatial model of stability. The I

numerical results were consistent with the experimental results.
n

In addition to uniformly heating the fiat plate, Strazisar and Reshotko

(1978), Barker and Jennin_s (1977), and Nosenchuck (1982) have experimentally

examined nonuniform surface temperature distributions. More ei_cient heat uti-

llzation can be achieved using nonuniform wall heating since the flow upstream I

of the critical Reynolds number is stable and does not need heating. Gazley and

"vVazzan (1985) have also studied a nonuniform surface temperature distribution i

using the linear stability theory model of Vv'azzan, Okurmura, and Smith (1968, a

|

!
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I 1970a, 1970b), while Nay_eh and E1-Hady (1980) and Asrar and Nay'feh (1985)

i performed nonparallel stability analyses showing that the stability is strongly de-
pendent on the actual heat distribution, but that the boundary layer is more stable

I than without heating.
Asrar and, Nayfeh (1985) have extended their nonparallel stability analy-

I sis to linear three-dlmensional waves propagating in two--_Jmensional liquid bound-

ary layers for both uniform and nonuniform surface temperature distributions.

I The results show that three-dimensional disturbances result in lower growth rates

than the two-dimensional disturbances irrespective of the wall overheat for the

I oblique angles considered. Zang and Hussani (1985a, 1985b) have examined three-

I dimensional passive control of the secondary instability process using heating, suc-
tion, a_d pressure gradient. They solved the three-dimensional, incompressible

I Navier-Stokes and energy _quations with all fluid properties varying. In their

model, t_ .- flow evolves in time instead of the streamwise direction of the experi-

I ments. They examined K-type transition and found that passive control did not

prevent secondary instability; but is substantially weaker than for the uncontrolled

I boundary layer. In addition, Zang and Hussani (1985a, 1985b) showed that the

I suction and pressure gradient methods of passive control were somewhat more
effective than the application of passive heating. They found that although the

I heated mean flow provides a stabilizing influence, the temperature perturbations
are destabilizing. Lowell (1974), in studying the linear stability problem, has also

I found that the temperature perturbations are slightly destabilizing.

1.3ActiveControl

It has been clearlydemonstratedin the literaturethatstabilitycan be

I greatly enhanced and transition delayed using passive methods of control. How-

ever, the expenses required for additional equipment and energy can negate some

!
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of the benefits of enhanced stability. The second approach to influence the tran- I

_ition process, active control, appears more promising in this context. Instead of

changing the stability characteristics of the base flow, as in passive control, the I

disturbance flow resulting from the instability is directly attacked. Wave super- I
position techniques are used to delay the transition process in active methods of

control. The principle is to interactively detect grow/ng disturbances and to in- I

troduce & control wave of equal amplitude and antiphased so as to cancel, or at

least reduce, existing instabilities in the flow. From the theoretical point of view, I

wave cancellation in the linear stage is clearly achievable. The Unear nature of I
_he Orr-Sommerfeld equation, which describes Tollrnien-Schlichting type distur-

bances, suggests this possibility. If rl - 61(y)e _(a=+'fz-_t) represents the first wave I
generated and v_ - 92(_)e i(a=+'fz-_t+ �¤a second wave generated in the

flow, then from the principle of linear superposition, v_ - _ + _ is a solution of I

the Orr-Sommerfeld equation. It is easily seen that v_ = 0 occurs when the two

disturbances have equal amplitude and are 180 ° out of phase, i.e. _ - _r. Active I

control applied at the linear stages of transition appears promising, but at later I
nonlinear stages of transition, the success of active control is less obvious.

The basic idea of the active control approach was first shown experimen- I

tally by Wehrmann (1965) and $chi/z (1965/1966). The experimental configura-

tions of both investigations were similar. They first excited a Tol]mien-Schlichting I

wave using a vibrating ribbon and then used a flexible wall built into the flat plate

to reduce the grow_.._g Tolimien-Sch/ichting wave by forcing the flexible wall to I

move in phase opposition to the wave. In addition, Wei,_ la'_n (1965) reported I
reinforcement was also achievable.

More recently, _.ctive control in boundary layers has been investigated I

in experimental studies by lV_lling (1981), Liepmann, Brown, and Yosenchuck

I
!
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I (1982), Gedney (1983), Thomas (1983), Strykowski and Sreenlvasan (1985), and

I MaestreUo (1985). Milling (1981) performed a brief study in a water channel in
which ToUmien-Schlichting waves were introduced into the flow using a vibrating

I wire. A second wire placed a short distance downstream used to introduce
was

control disturbances at the same frequency, but with the phase and amplitude

I adjusted to mi-lr-_ze the disturbance from the first _.-e. The disturbances were

i nearly cancelled using this technique.
In an investigation in a water tunnel, Liepmann, Brown, and Nosenchuck

I (1982) used heating strips to excite instability waves in the boundary layer. The
thin metal strips were flush-mounted on the plate and could be subjected t_ vari-

I cus time-dependent temperature loading. A second set of heating strips
forms of

was located downstream in order to control the deliberately excited ToUmien-

I Schlichting waves from the first heating element by inputting appropriate ampll.

i tude and phase perturbations to the _econd heating element. The reduction in
the disturbance amplitude level and delay in transition were clearly evident from

I these experiments. In an application of this study, Liepmann and Nosenchuck

(1982) used one healer strip and a hot film probe downstream to actively control

I the naturally occurring ToLlmien-Schlichtin8 waves. The heater strip was used

as the actuator and the hot film probe the sensor. The probe measured the wall

I shear stress fluctuations, and from these measurements a signal was synthesized

i to drive the heater. The disturbance waves driven by the heater strip were super-
imposed on the naturally occurring Tollmien-Schlichting waves and, depending

I ou the phase shift, the disturbances were attenuated or reinforced. This
system

formed a feedback control loop of transition.

I Thomas (1983) has studied the development of the flow field in the bound-

i m-y layer downstream of the active control measures. Using two vibrating ribbons
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for the generation and control of the instability waves, transition was delayed I

by superimposing equal ampUtude and antiphased ToUmien-Schlichting distur-

bauces. However, downstream of the control measure very weak three-_mensional I

background disturbances in the flow interacted with the primary two--_mensional I
waves, and the flow could not be completely restored to its undisturbed state. In

the experimental studies, either the ordered peak-valley or the staggered peak- I

valley structures were observed in the downstream re, on of study. These struc-

tures were significantly delayed when the control measures were applied. Thomas I

(1983) also investigated wave interactions further by using a waveform consisting I
of two waves of dii_erent frequency for both ribbons. Adjusting the amplitude

and phase to minimize the downstream disturbances, the amplitudes of the two I
frequency components were reduced. However, the amplitude of the difference

frequency component was only partially reduced and interacted with the three-- I

dimensional disturbances in the flow.

In the experimental work of Gedney (1983), a ToUmien-Schlichting wave I

was excited by sound and then nearly cancelled by vibrating the plate near the I
leading edge at the same frequency as the sound signal. The amplitude and phase

of the plate vibration was continuously adjusted until the transition point moved I

downstream as far as possible. The .,,elocity fluctuations were reduced to approxi-

mately I/SOth the level of either the excitation by sound or plate vibration alone. I

Active control has a/so been shown possible in the work of Strykowski and

• ISreenivasan (1985). A wire is v/brated in a slot in the plate to produce a distur-

bance and _ second wire in another slot downstream of the first is used to control I
the disturbance. This technique is similar to periodic suction and blowing at the

wall. Strykowski and $reenivasan (1985) also attempted to generate ToUmien- I

Schlichting waves in air using the heating element technique of Liepmann, Brown,

!
I
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I and Nosenchuck (1982), but were unable to observe any perturbations. However,

i Liepmann and Nosenchuck (1983) have successively triggered laminar instability
waves in air using heater strips. MaestreUo (1985) has also generated instability

I waves on an airfoil using surface heating strips in a region of favorable
pressure

gradient. In addition, Maestrello (1985) was able to reduce the perturbations using

I sound as the control input at near normal incidence.

In addition to the experimental studies, several numerical investigations

I of active control have been undertaken recently. Three-dimensional numerical sim-

I ulations of active control in the plane channel have been conducted by Kleiser and
Laurien (1984, 1985), Biringen (1984), and Biringen , Nutt, and Caruso (1985)

I using the temporal model so that the disturbances in time instead of in
grow

the streamwise direction. The flow is also spanwise periodic. Kleiser and Lan-

I rien (1984, 1985) have applied periodic wail suction and blowing, fluctuating

mass forces, and direct manipulation of Fourier modes as control inputs. Both

l the fundamental and subharmonic routes to turbulence were considered. Two--

I dimensional control applied at the. early two-dimensional stages of the transi-
tion process provided the necessary control to reduce both the two--dimensional

I amplitude Two--dimensional control applied at later
and three--dimensional levels.

stages where significant three--dimensionality in the flow had developed was not

I effective in delaying transition. Biringen (1984) and Biringen, Nutt, and Caruso

i (1985) have found similar results applying periodic suction and blowing. In addi-
tion, applying three--dimensional control after the flow has undergone secondary

I instability provided a significant reduction in the disturbance amplitude levels.

Laurien and Kleiser (1985) and Lanrien (1985) have also numerically

I simulated active transition control for the three-dimensional boundary layer using

a similar numerical model as for the plane channel. Again the flow develops in

!
!
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time instead of in the streamwise direction. Two-dimensional periodic suction- l

i

blowing was used as the control input. Control at the early two-dimensional E

stages was effective, but failed in the later three-dimensional stages of transition.

Zang and Hussani (1985a, 1985b) performed similar three--dimensional temporal l

simulations of the boundary layer and plane channel in which they artificially
ma

suppressed spanwise velocity and pressure modes leading to a delay in transition. I

For the boundary layer, this spanwise mode control was in addition to passive

heating.

In a two-dlmensional numerical investigation of the boundary layer, Mc- I

Murray, Metcalfe, and Riley (1983) studied 'active control using periodic wall too-
mm

tion. Control was achieved for both single frequency Tol]mien-Schlichting waves I

and wave packet disturbances consisting of several frequency components. In ad-

dition, a Usmart wall" algorithm was developed which [inked the phase and ampli-

tude of the wall forcing to the actual phase and amplitude of the normal velocity I

component in the flow field away from the wall. In addition, Metcalfe, Rutland,
i

Duncan, and Riley (1985) found that part of the stabilizing effect due to the wall I

motion could be attributed to wave superposition, but through an energy analysis
i

it was found that energy from the perturbed flow was transmitted to the mean

flow also providing a stabilizing effect. I

In addition to the numerical investigations using the temporal model
am

to study active control, Bayliss, MaestreUo, Pari_h, and Turkel (1985) have nu- I

merically studied active control of the spatially growing compressible boundary

layer. The two-dimensional compressible Navier-Stokes and energy equations

were solved and control was achieved using localized periodic surface heating and I

cooling. The maximum amplitude reductions were 6% for heating and 12% for

I
!
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I cooling. These reductions are not as promising as has been shown in the labo-

I ratory I where near total attenuation was achieved. However, it was noted that
an optimal phase and amplitude input to the heater strip signals was not inves-

I tigated. (1985) has also numerically simulated two-dimensional active
Dittrich

control in water with surface heater strips using the same numerical method as

I was employed in the passive control simulations. A disturbance was introduced

i at a surface heater strip through local temperature fluctuations that were out of
phase with the disturbance waves in the flow. A much stronger attenuation in

I amplitude of the perturbations was seen in comparison with the results of Bayliss,

MaestreUo, Paxikh, and Turkel (1985).

I Bower, Kegelman, Pal, and Meyer (1987) have numerically investigated

t,co-dimensional active control of a single frequency wave in the plane channel us-

I lag periodic wall blowing and suction. The computational model is based on the

I solution of the Orr-Sommerfeld equation and an analytical expression is derived
to provide the amplitude and phase of the downstream surface velocity distribu-

I tion which results in the suppression of the instability wave. Bower, Pal, Cain,

and Meyer (1987) have extended this analysis to the suppression of wave pack-

I eta through localized velocity perturbations. In addition, Pal, Bower, Cain, and

Meyer (1988) have used a similar numerical technique to generate and suppress

I a multifrequency instability wave in the Blasius boundary layer using locaiized

I suction and blowing. Bower, Pal, and Meyer (1987) have also applied a similar
computational method to actively control two-dimensional instability waves in

I through time-periodic heating. The computational
the boundary layer surface

model is based on the linearized equations with temperature dependent viscosity

I and thermal conductivity. A two-dimensional single frequency disturbance was

i generated and suppressed through the application of surface heating.
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In both the passive a_d active control investigations, it has been shown I

that transition can be prevented or at least delayed. However, in a comparison of

active control using surface heating strips with passive control by uniform surface I

heating, Nosenchuck (1982) found a considerable dii_erence in the power required I
to achieve an equivalent increase in transition length. Employing the previously

described f.-edback control loop to reduce the naturally occurring disturbances in I
the flow resulted in a 25_ increase in transition length and required only ten watts

of power for the heater strip. Under identical flow conditions, the same delay in I

tradition was accomplished with passive control, but required 1900 watts of power.

Thus over two orders of magn/tuae more power was needed using passive control I

to obtain the same result. Therefore, these experiments provide solid evidence I
of the considerable advantages of active control over passive control for delaying

tr_sition. I

I
I
I
I
I
[
I
I
I
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CHAPTER 2

PROBLEM STATEMENT

The contributions of stability theory, physical experiments, and, numer-

ical simulations discussed in Chapter 1 have helped to provide a better under-

standing of transition control as applied to boundary layer flows. In particular,

numerical simulations have become _n increasingly _porta_t method of research.

In numerical computations, Unearity or weakly nonlinear interactions do not have

to be assumed as in stability theory mc_._els. Ln addition, in numerical simala-

tions, individual spectral components or combinations of these components can be

considered, whereas, in physic'xl experiments broad band noise is always present

at some level. The parameter space can also be more easily varied :.n numerical

computations than in physical experiments.

Transition control using surface heating or cooling is a v{able alternative

to pressure gradient con_,rol or control by suction and blowing. The appilt:_.tion of

pressure gradient control requires a change in shape of a profile and may create

additional structural re tuirements. Although suction control does not necessitate

a change in shape, a mass source is needed and the suction slots have to be

carefully designed so as not to introd_,ce additional disturbances into the flow.

Surface heating is a nonintrusive method of control and can be applied to any

geometry.

With the increase in computin_ capability over the past several years,

the simulation of three-dimensional transition has become feasible. In th;s work,

a three-dimensional numerical investigation of transition ,:ontr,_! ,.:'ng surface

heating techniques is conducted. Both passive and active methods of transition

1989012697-040



!
!

44

control are studied in an effort to provide insight into the potential of each mode I

of control

The numerical simulation models the three-dimensional hydrodynamic

stability of an initially laminar, incompressible boundary layer on a flat plate with i

constant or time-periodic surface heating applied. The complete unsteady three-

dimensional Navier-Stokes and energy equations _ the basic governing equations i

used in the simulations. As mentioned in Chapter 1, there are two conceptual m

frameworks in which to consider the stability problem, spatial and temporal. I

Important contributions have -,alreadybeen made in investigations of 1am- I
I

inar flow control. However, in the previous numerical investigations of passive

and active transition control, except for the two-dimensional studies of Bayliss, l
I

Maestrello, Pa_ikh, and Turkel (1985) and Dittrich (1985), the temporal stability

modal was chosen primarily for its simplicity. In the temporal approach, the base I

flow does not vary in the streamwise direction because the flow phenomena are
I

assumed spatially periodic in this direction. The growth of the flow is in time.

The spatiany periodic results are then often transformed into temporaUy periodic

results with spatial growth in the downstream direction using a transformation by

Gaster (1962). This transformation is valid only if the growth rates are small and i
i

the mean flow is parallel. However, for the large growth rates of the seconda_

instability process, this transformation is no longer valid. The temporal model i

cannot capture all the features observed in the physical experiments. Nonparallei

effects and the proper wave dispersion can be incorporated only in spatial models, g

In this work, the numerical model allows for investigations of spatially i
I

gro,cing, three-dimensional disturbance waves in a growing boundary layer. The

difference between the temporal and spatial approaches is of fundamental im- i

portance because the effects of a localized disturbance input can be simulated

I
!
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rea!irsticallyonlyifthecharacteristicsof theunderlyingbase flowarenot altered

and ifthe disturbancesare allowedto develop_nd propagatein the downstream

I direction.Directcomparisonwith laboratoryexperimentsis then possible.In

additionto thisadvantage,the feedbackcontrolloopin theactivecontrolexperi-
ments ofLiepmann, Brown, and Nosenchuck(1982)can be realizedonlywith the

I spatial model with feedback control in the streamwise direction.applied

Realistictwo-dlmensionalnumericalsimulationsofspatiallygrowingand

propagating small amplitude Tollmien-Schlichting waves in a boundary layer have

been made by Fasel(1976).In thesesimulations,a vorticity-velocityformulation
of the governing equations and a fully implicit finite difference method was used.

I Detailed quantitative comparisons with linear stability theory, the nonparallel the-
ory of Gaster (1974), and also the experimental measurements of Schubauer and

I Skramstad (1948)and Ross,Barnes,Burns,and Ross (1970)has shown thesimu-

lationsyieldresultsofhighaccuracy.Fasel,Bestek,and Schefenacker(1977)have

also used the same numerical method with larger osciUation_ to predict nonlinear

effects in the two-dimensional stages of boundary layer transition. A modified
version of this simulation was developed by Fasel and Bestek (1980) to study

I nonlinear osdUations in plane Poiseuille flow.

Fasel, Rist, and Konzelmann (1987) have developed a three-dimensional

I numerical method to investigatc spatial three-dimensional disturbances in a bound-

ary layer. The algorithm is a combined finite difference/spectral method with

I periodicity assumed in the spanwise direction. The underlying base flow i_ two-

I dimensional.Comparison withlinearstabilitytheoryforsmallthree-dimensional
obliquewaves shows resultsof thesame degreeofhigh accuracyas forthe two-

I dimensional case. In addition, as mentioned in Chapter 1, both the nonlinear

subharmonic and fundamental routes to transition have been simulated by Fasel,

I
I
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_st, and Konz_ann (1987) _th exc_ent comp_son to the expe_ent_l re- i

i

suits of Kachanov and Levchenko (1984) and Klebanoff, Tidstrom, and Sargent •

(1962).

These previous numerical models are adapted in this current work to the i
i

problem of three-dimensional boundary layer transition control. The numerical

extended to include the energy equation and the temperature depen- I
model is

dent viscosity. The spectral representation in the spanwise direction exploits the

periodic spanwise structures observed in the three-dlmensional experimental in- i

vestigations. Standard finite difference approximations are used in the streamwise i
i

and wall normal directions. In the following chapters the governing equations

and the numerical model are described in detail. Chapter 3 describes the system i
i

of governing equations for incompressible fluid flow in three dimensions and time.

The boundary and initial conditions for the spatial stability problem are presented i

in Chapter 4. The numerical method used to approximate the governing equations

and boundary conditions is described in Chapter 5. In Chapter 6, numerical results i

of both passive and active transition control in a boundary layer flow are presented i

and compared to other investigat;ons where appropriate. FinaLly, conclusions are

given in Chapter 7_ i

This work focuses on the control of the secondary instability process in
ais

the boundary layer. However, in order to gain an understanding of the control as. i

pects of transition, linear, small amplitude dist:,rbances are first considered. Con-

trol of both two-dimensional Tollmien-SchLichting waves and three-dimensional U

oblique waves is studied. Through the simulation of the oblique waves, the ap- im
pLicability of the numerical model for investigating three-dimensionai transition

can then be verified. Both passive and active control by surface heating are in- i

vestigated in these linear flow simulations. In the passive r.ontrol investigations,

I
i
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i uniform and nonuniform surface temperature distributions are considered. The

i results are compared with available experimental measurements and theory.
In the active control simulations, a similar surface heating strip arrange-

I ment and feedback control loop is employed as was demonstrated in the two-

dimensional control experiments of Liepmann and Nosenchuck (1982). Although

I these experiments are two-dimensional, the extension to three-dimensional, lin-

I ear disturbances is straightforward. Robey (1987) has successfully triggered three-
dimensional waves in the boundary layer by subjecting the heating strips to three-

I dimensional time-dependent temperature loading (The experiment was carried out

in the same water channel that Liepmann and Nosenchuck (1982) used.).

I In the active control numerical simulations, the physical mechanisms of

i how localized heat disturbances are transmitted into Tollmien-Schlichting waves in
a boundary layer are investigated. This question addresses the complex problem of

I receptivity as first put forth by Morkovin (1969). As later described by Reshotko

(1976), receptivity denotes the means by which a particular forc'.'ddisturbance (in

I this case the localized wall temperature disturbance) enters the boundary layer

i ard the nature of its signature in the disturbance flow. Insigh_ into the physical
mechanisms can be obtained by examining again the boundary layer momentum

I equation at the wall of the plate (Equation 1.9) in the absence of a pressure
gradient and without suction or blowing:

I ,_-o ,_-o ,=o
Hi

With the spanwise vorticity, _,, defined by

_,= (2.2)

I _ a='

i
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Equation (2.1) becomes I

1 d_ o'i. (2.3) I•.,__,
Thus it is expected that the heat disturbances (creating viscosity perturbations) I
mainly cause a spanwise vortici_y gradient normal to the wall. Better understand-

ing of this receptivity mechanism is helpful in possibly improving active control by I

using heating strips, and is addressed in these numerical simulations. Maestrello

(1984) has carried out a theoretical analysis of active surface heating in an in- I

compressible flow and shows that small amounts of localized surface heating can I
excite disturbances. The local periodic heating was related to normal velocity

disturbances and pressure disturbances. In the numerical simulations considered I

here, the signature of the spanwise vorticity disturbance is examined. An optimal

width of the heating strip is also explored. I

Control of the nonlinear secondary instability process is investigated with

either passive or active heating applied. Both the fundamental ordered peak- I

valley and the subharmonlc staggered peak-valley processes are studied. To limit I
computational costs, only one mode in the spanwise direction is retained so that

reasonably high grid resolution in the streamwise and normal directions could be I

maintained. Therefore, control of the early stage of the secondary instability pro-

cess of boundary layer trausition is studied. Uniform surface heating is employed I

in the passive control simulations. For the active control simulations, the effective-

ness of a two-dimensional control input versus a three-dimensional control input 1

is examined. I

!
!
!
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I CHAPTER 3

I GOVERNING EQUATIONS

I The flow of a nonisothermal viscous fluid is governed by the Navier-

Stokes and energy equations. These equations form a nonlinear, second--order

I system of partial dif[erential equations and have various forms depending on the

I physical properties of the fluid, the coordinate system, and the specific parameters
chosen to describe the flow. In this work, the flow of a three-dimensional incom-

I pressible fluid in a rectangular coordinate system is considered. The vorticity-

velocity formulation of the Navier-Stokes equations is preferred to the primitive

I variable (velocity-pressure) representation. The governln 8 equations and assump-

tions made are described in detail below. Also, the nondimensionalization of the

I governing equations in regards to the length, velocity, temperature, and time scales

of the problem is presented.

!
3.1 Equations of Motion in Primitive Variable Representation

I The Navier-Stokes and energy equations describe the conservation of

mass, momentum, and energy of a viscous fluid. For the incompressible, three-

I dimensional flow of a Newtonian fluid, the conservation laws axe (in vector form

I and indicia/notation)
Continuity:

| D-7+_V.U =o (3a)
Momentum:

! DU -- --

_--_- = _- V_ + V ._',j (3.2)

I Energy: DT --

_-_ = v. ('_VT) + ¥ (3.3)

!
!
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where _ is the cUsslpatlon function: I

and _j is the shear stress tensor defined by

!
_,_=_ _=_+_=,•

The velocity _ is a vector field: I

U = [_,_,_] (3.6) II
and _ is the vector of gravitational acce/eration:

I
whose components are functions of spatial location _ and time t: I

u=uC_,z) C.,'.s) II
_ = _(_, t-) (3.9)

= [_,_,_]. (3.10) I

The pressure _ and temperature _ are scalar fields: I

P=P(x,O (3.11) II
"" _P= T (_, t') • (3.12)

The flttid properties are the density _, thermal conductivity _, specific heat E, and I

dynamic viscosity _ and are also scalar fields: I

_=_(x,O (3.13)

/¢= k (_, t-) (3.14) I

=_(_,_) (3.:'_) II
_'= ,' (_,0 (316)

!
I
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I The relationship for the internal energy, d'_= _ d_, has been employed. The upper

bars denote dimensional quantaties.

I The term '_' in Equation (3.2) represents a body force impressed on

I the fluid. In fluid motions where temperature differences create density gradients,
it is sometimes necessary to include this term as a buoyancy force. Generally

I density is a function of pressure and temperature, but the dependence on pressure

is small in flows affected by gravitation. Therefore, the density can be expanded

I in a Taylor series in temperature:

where 'oo' denotes the freestream flow conditions. Introducing the coei_cient of

I thermal expansion,

I _®=-_ _ __-_,__-_
and considerin 8 moderate temperature differences, Equation (3.17) can be then

I be approximated by

II _=_®(1-_®(T-_®)). (3.19)
Substitution of Equation (3.19) into Equation (3.2) yields

_-D_- = _oo _ - V_- _o _ ('T - T_) _ �V• v-_#. (3.20)

I The &rat two terms on the risht hand side can be combined into a sinsle 8racUent

function, -V (_ - Poog" x), and a new pressure can then be defined:

I
P =p- p= g. x- _=. (3.21)

i Introducing this mo_fed pressure term into Equation (3.20) results in the follow-

ing form of the momentum equation:

!
I
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Simplifications of the governin E equations, leaAing to the exclusion of I

specific effects on the flow (e.g., buoyancy, viscous dissipation, and variable fluid

properties), is made after examining the relevant nondimensional coefficients. I

3.2 Nondimensionallzation I

The equations of continuity (3.1), momentum (3.22), and energy (3.3)

are in dimensional form. Nondimensionalization of the basic equations allows for I

a more efficient form and produces physical insight into the flow. The equations m

are made dimensionless by choosing characteristic scales that correspond with the m

physical scales of the problem considered. The flow variables are nondimensional-

ized with the following constants: •

Z== _=L 2
- N

'= T T = _-:=:..._ P --_--_--T-poouoo ' (3.2Z) I

/_ = _--'- C=-- k.= g
m

p--__

where the suk.cript 'w' represents the wall value and _ is a characteristic length.

The parameter Re is the Reynolds number defined below. The y coordinate and I
I

normal velocity component u are stretched by the factor v/_ to insure that all

coordinates and velocity components are of the same order of magnitude in the I

numerical computations.

Substitution of these new nondimensional variables into the dimensional I

equations results in the following nondimensional set of equations:

|
D'-_+ p VI. U : 0 (3.24)

!
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I DU Gr= T + 1P'b-;"= -v,P- Re"-_ _ v, ._,'j (3.25)

I DT 1 Ec
pc_ = R;_PrV=. (kV,T) + _ _ (3.26)

I where

i 8 8. 8Vz = _z i+_j+_z k, (3.27)

I V, = _z i + _ J+ _z k, (3.28)

1 _ = o% o'_ '] , (3.29)

J
_d

I _ 1 o%, 8.u 8.,.,.,

%=" vr_ + vr_ O= V'_ Oz

\ a";+ a-; V-_a; + _ 2_
(3.30)

I The solutionsoftheabovegoverningequationsdependon thefollowingfournondi-J

I mensional parameters:

Reynolds number : Re = _U_ L (3.31)
|

Grashof number: Grx g_'= Pl _.s (_u, - T,:o) (3.32)
Poo

Prandtl number : Pr _= _= (3.33)

Eckert number : Ec = = (3.34)

| _=(_'-_®)

!
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At this juncture, an assessment of the influence of the various force, I

energy, and variable property effects on the flow is made. The following conclusions

axe reached: g

Gr=

I.) Buoyancy effects can be neglected if _ << I. The Grashof number I
becomes important only at very small flow velocities. With even moder-

ate velocities, the buoyancy forces in Equation (3.25) are small compared I

with the inertia and viscous forces. The flow speeds considered in this

work are large enough that the buoyancy forces do not contribute to the I

solution of the flow.

2.) Viscou_ dissipation (frictional heat) is negUgble if Pr Ec << 1. The

largest Eckert numbers estimated for the flow conditions in this work

are O(10-s). Dissipation is not important for the moderate velocities

considered here. I

3.) FinaLly, a consideration of the importance of the dependence of the fluid
m

properties on temperature and pressure is made. Water is chosen as the I

representa/ve fluid in this work so that the results of this investigation •

are applicable to technical situations occuring in nature. In addition,

comparison with the results of previous experimental and theoretic__.l in- I
U

vestigations can be made since water was considered in these studies.

water, the fluid properties are not affected by moderate pressures. I
For

The specific heat and density are relatively independent of tempera-

ture and the thermal conductivity also varieslittle with temperature I

in water. However, the viscosity of water decreases very markedly with

increasing temperature. Considuring the normal liquid range of water

(0°C to 1O0°C), the specific heat varies by only approximately 0.28%, I

the density by 4.2%, and the thermal conductivity by 18%. However

!

ii
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I the viscosity varies by about 146% over this temperature range. Even

for more moderate temperature differences, the viscosity variation with

I temperature becomes important. Therefore, in the flow considered herr.,

I the viscosity variation with temperature is included. The other fluid
properties are held constant.

I With the above assumptions now introduced, the nondimensional gov-

erning equations become

I vl. u = o (3.35)

I DU -V2P + 1
D--T= _ V,. _:j (3.36)

I --=--DT I V_ T (3.37)Dt Re Pr

I where

I V_ = _ + Re + _"z= • (3.38)

3.3 Equations of Motion in Vorticity-Velocity Representation

I The primitive variable formulation of the governing equations was pre-

I sented in order to provide ease in the analysis of the influence of specific effects

on the flow. However, vorticity dynamics plays an important role in the behavior

I of boundary layer flows and so the vorticRy transport form of the Navier-Stokes

equations is more advantageous than the primitive variable formulation of the the

I governing equations.

I The vorticity transport equation is derived by taking the curl of the
momentum equation:

D'-_"- (D. V---)U = _x (_. _'_j) (3.39)

!
I
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where _ is the vorticity vector field: I

_ = [_T, _, _,,] (3.40) |

defined by I

_-- -_" x U. (3.41)

I
The bars again denote dimensional quantities. The second term on the left hand

side of Equation (3.40) arises from the convective derivatives and is called the I

vortex stretching _,erm. The term on the right hand side is the viscous diffusion

term. The pressure _ has dissappeared from Equation (3.39) since, for a scalar I

field s(z, t)

V x Vs = 0 (3.42)' I

The viscous diffusion term can be rewritten as I

v × (-¢ _) =_V'_-v_ ×(v ×=) (v_ _,_) (3.43) |

where

|
e_ = -=-_. (3.44)

Equation (3.43) was derive'] using the following vector relationships: I

Z = V. (_%) I

= pg. _ij �g_._ij, (3.45) I

but

V" _ij = _-2._ (3.46) i

,o |

X = gg:U + v P. %. (3.47) I

I

I
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I Before taking the curl c_ Equation (3.47), the following vector identites are intro-

I duced, with B - _2U.

i _x (_ =_x_+V_ x_= _V x B- B x _ (3.48)

| Vx (Vx_ -_v_.__v'_

| =v(v _)-_ (3.49)
The firstterm on therighthand sideofEquation(3.49)vanishesby consideration

I of thecontir:aityequation(3.35),so

| V x (V x _ = -B (3.,'0)

I or

x _ = _=U. (3.51)

I Now tMdn8 thecurlofEquation (3.47)yields

| Vx_=-_ ×_×_)+_ x_)x_) +_x(_ _,_) (3.52)

I The following vector relationship is considered:

| V×_x_) _(v_)-'= - V _, (3.53_

i but formay vectorC V _× c--')=0 (_54)

| or
V._ = O. (3.54a)

!
!
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Equatiou (3.54a) implies that vorticity, Like velocity, must be divergence free. l

Equation (3.50) then becomes

V × (V × _) = -V'_ (3.55) |

and so fina_y I

V ×Z=pV'_-V_ ×_ ×_)+V ×_._j). (3.56) |
Thus the vorticity transport equation, with temperature dependent viscosity, be-

comes l

D--T- (_ _ C =_V'_- V_ ×_ ×_) +V ×_. _,j). (3.57)

The velocity and vorticity components axe related through Poisson type I
equations as seer. by Equation (3.51). In this work, three Poisson equations axe

derived by relating the three velocity components to the three components of I
vorticity. The three Poisson equations axe

vs_= _ _a_ (3.58)

--2 _ _'_" (3.59) IV_e= _z a_

Vs_= _z _0_ (3.60) I
where

I_---202 02 02

Vl "-- _'2 �_Z2 (3.61)

--5 02 02 Iv, = _ +_-_. (3._2)

The Poisson equation for the u velocity, Equation (3.58), is derived by the following l
_gebraic manipulations:

I0 0
u Poisson Equation = _z _'' U--) + _z (_-_) (3.63)

l

I
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l where

I _ = _ _'_" (3.64)

l The Poisson equation for the v velocity, Equation (3.59) is taken from th-. v-
component of Equation (3.51). Finally, the Poisson equation for the w velocity

l component, Equation (3.60), stems from the following addition:

| a aw Poisson Equation = _z c_" _ + _z (_)" (3.65)

l Although two of the three Poisson equations appear nonstandard, in that Equation

(3.51) is not used, the justification for these equations will become apparent when

l the wall boundary condititions for the vorticity are consi,_ered.

l The vorticity-ve]ocity formulation of the governing equations is nondi-
mensionaIized with the scales given by Equation (3.23) and with the following

l additionM nondimensionaI flow variables:

I _'_'="L _'_'L _'-i.=L' (3.66)

The nondJmensiona_ vorticity components are then defined by

(3.67a)
_o== ReOz OV

0% &=

I w_ = Oz Oz (3.67b)

_= = {3.67c)

Ov Re0=
The vorticity transport equation, in nondimensional form, is

I _.
== D--t"-(w. VIIU =/_ V_ + c (3.68)

l

!
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where the components of the vector c = [c., %, c_] are defined as follows: I

+ R_ 0_ _ 0 z l Re 0=0y _'z + _'z (3.69a) I

R, oyo_ ?7 + Reo,oz + R-'-;0";

(_ i_.,__ I
c, =+

o, oy _e _ +_'__ _+

02/_ (0u 1 o_) 2 o_. (____ onto) (3.69b) 1_Oz _ + Re _ ReOzO:

e,= Re Oz + 2

+ R_aT _ Reo,or,

+ ReOyOz Oz Oz R'.OzOz Reaz +

Reo,: _ / + RVO-_
Equation (3.54a) in nondimensional form becomes

!
v._:o (3.70)

The three Poisson equations in nondimensional form are 1

vl_= ------a_'aza,_a2" (3.71) I

V_v = Ow, aw. (3.72)

Oz Oz 1
V]w = &% O2v (3.73)Oz O_Oz

I
1

II I
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I where
02

I V_ = _ + _ (3.74)

and V_ is as defined by Equation (3.38).

I The fundamental set of equations used in this work are represented by

i Equations (3.69) throush (3.73), the energy equation (3.37), and the continuity
equation (3.35). These equations comprise a system of nine equations for the eisht

I components t=, v, to, ¢o=,¢o_, ¢o=_T, and/_. A final empirical equation relatin 8 the
vicosity to the temperature,/_ =/_(-r,), is presented in the next section. With the

I inclusion of this re_.ationship between the viscosity and temperature, ten equations

for the eisht components result. Thus not all ten conditions are independent.

I However, the continuity equation, which states that the divergence of velocity is

I zero, must he enforced only on the boundaries. This can be shown by takin 8
the divergence of Equation (3.50) and imposin 8 the vector indentity (3.54) which

I yields

V' (V •U'O")=0 (3.75)

I The maximum principle for Laplace's equation guarantees that the divergence of

I velocity will he zero everywhere in the domain if it is zero on the boundary. A

similar principle does not exist for the vorticity diversence. In this work, Equation

I (3.70) is not enforced explicitly, but rather provides for a check of the quality of

the numerical solution.

I It can be seen from the dimensionless set of 8overuing equations that

I two dimensionless parameters exist which govern the fluid motion, the Reynolds
number, Re, and the Prandtl number, Pr. In addition to these two dimensionless

I parameters, five additional dimensionless parameters arise throush the bound-

ary conditions: 1.) the temperature ratio between the waU and the free stream

!
!

I I
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T,, _'Poo10' I
tempertures, _--_; 2.) the disturbance frequency F - --2 where _oo is

g_

the freestream kinematic viscosity and _ is the circular disturbance frequency; I

3.) the ratio between the streamwise and spanwise disturbance wavelengths __T;

4.) the relative two--dimensional disturbance amplitude [_D[; I
and 5.) the rel-

ative three-dimensional disturbance amplitude _------.I_DIIn summary, the spatial

stability problem for the heated boundary layer is characterized by the following

seven nondimensional parameters: I

1.) Reynolds number, Re

2.) Prandtl number, Pr I

T=

3.) temperature ratio, _ I

4.) frequency parameter, F = _U_ 104

|
5.) ratio of streamwise to spanwise wavelengths,

6.) two--dimensional disturbance amplitude, [_DI I

7.) three-dimensional disturbance amplitude, _ I

3.4 Viscosity Variation with Temperature I
Before proceeding further, the viscosity dependence on temperature is

presented. The property data can be obtained by interpolating tabulated exper- I

imental data or by using an empirical viscosity-temperature relationship that is

based on a curve fit of the experimental data. Since the viscosity variation with I

temperature is important in establishing the stability characteristics in a heated

boundary layer, inaccurate viscosity information can cause discrepancies between I

the results of the numerical solutions and experimental investigations. Lowell I

(1974) has shown that even slight differences in property-temperature variations

!
!

I
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I can produce a marked effect on the stability characteristics. Since an empiri-

ca/relationship provides values within acceptable experimental error limits, this

I method of determining the viscosity is preferred to that of using an interpolating

I polynomial since an interpolating polynomial can introduce deviations from ex-
perimenta/data. The empirical viscosity-temperature reIationshp chosen for this

I study is from the National Bureau of Standards from measurements in viscometers

calibrated with water at 20°C and one atmosphere. The empirical relationship is

! -for 0°C < T _< 20°C :

1301

I l°gl°_ = 998.333 + 8.1855(_- 20) + 0.00585(T- 20) 2 - 1.30233 (3.76a)

I for 20°C __._ _ 100°C :

I lOglo___2yo= 1.3272(20 - T)- 0.001053(T- 20)'_-¥ _-_ (3.76b)

I where temperature is in degrees Celsius, viscosity is in centipoise, and _20 -
1.002 cp. Equation (3.76a) was derived by Hardy and Cottington (1949) and

I Equation (3.76b) was derived by Swindels (1983).

To complete the mathematical model, the integration domain and bound-

I a_T and initial conditions must be specified. This is the subject of the next chapter.

!
!
I
I
I
I
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CHAPTER 4 I

BOUNDARY AND INITIAL CONDITIONS I

The mathematical statement of the problem posed in Chapters 2 and I

3 is not complete without specifying the integration domain and the boundary I
conditions on that domain. The particular problem considered here is complicated

by the choice of studying the spatial de-_elopment of the flow. In flow through I
systems, physically realistic inflow and outflow boundary conditions are dii_cult to

prescribe. For this work, the boundary and initial conditions are based on physical I

insight, analytical work (Appendix A), ana linear stability theory (Appendix B).

!
4.1 Time Domain for Passive Control

The time domains for the passive control and active control simulations I

differ slightly. For the passive control spatial stability problem, the time integra-

tion can be broken down into two steps: I

I.) Obtain the steady, laminar, two--dlmensional solution of the governing I
equations for the heated, undistu.rbed flow whose stability is to be inves-

tigated. I

2.) Begin periodic forcing and obtain a time--dependent, three-dimensional,

disturbed flow solution to the governing equations f_,r several periods of I

the oscillation.

The time domain of Figure 4.1 shows the above two steps. From an initial con- I

dition at time _0, the governing equations are integrated forward in time until a I
steady state is reached. Then at time tl, the periodic disturbance perturbation is

introduced to initiate the forcing. To minimize transient ei_ects, a ramp function I

r(t) is prescribed during the interval tl < _ < t_. The full disturbance amplitude

!
!
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m is reached at time t = t2 with integration continuing for t2 _ t as the disturbance

propagates downstream. The boundary conditions for the undisturbed flow are

m used for t < tl and then switched to the disturbance flow boundary conditions at

m t--_a.

m 4.2 Time Domain for Active Control
For the active control spatial stability simulations, the time integration

m involves two disturbance inputs. The first input creates the initial disturbance

in the flow and the second acts to control the initial instability wave. The time

m integration is broken down into the following three steps:

m 1.) Obtain the steady, laminar, two-dimensional solution of the governing
equations for the undisturbed flow.

m 2.) Begin periodic forcing and obtain a time-dependent, three-dimensional,
disturbed flow solution to the governing equations for several periods of

m the oscillation.

3.) Initiate periodic forcing at a heater strip that serves as the actuator,

m downstream of the input disturbance mad obtain the solution to the gov.

m erning equations for the two concurrent disturbances for several periods
of the osdUation.

I The time domain of Figure 4.2 depicts the above three steps. For the first two

time steps the procedure is the same as for the passive control simulations. Again

m a ramp function r(t) is used to reduce transient harmonics. At time t3 > t2, the

m periodic disturbance perturbation is introduced at the heater strip to begin the
actuator forcing. The integration continues for ts < t as the disturbances interact

m and propagate downstream. Again the boundary conditions ar-. switched from the

undisturbedflowto thedisturbedflowconditionsat timet = tl.

I
m
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4.3 Coordinate System and Spatial Domain I

The spatial domain for the investigations considered in this work is a rect-

angular box shown in Figure 4.3. Although the ori_ns of the coordinate system are J

arbitrary, the spanwise origin is chosen to be zero. The streamwise, normal, and D

spanwise dimensions axe specified by input parameters Iz, ly, and Iz. The parame-

ter it specifies the streamwise length of the box in terms of the three-dimensional I
v

disturbance wavelength, _sv, where the streamwise wavenumber ar3o is a speci-

fied parameter. The parameter ly sl:eci_es the dimension of the box in the normal i

direction based on the number of boundary layer displacement thicknesses, _1, at

the inflow boundary. Finally, the parameter Iz specifies the spanwise extent of the •

box in terms of the spanwise wavelength, _T, where the spanwise wavenun_er _ D
g

is also an input parameter. To erforce spanwise periodicity, lz is an integer. The

spatial domain is specified by the following equations: I

0 -Y0 -<_ -<YM = l_ _1 (4.1b)

!
4.4 Boundary and Initial Conditions for the Undisturbed Flow

In the analysis of boundary layer flows along a t_at plate, the typical i
velocity profile used in stability analyses is the similarity solution of the boundary

layerequations.For thecaseofisothermalflow,the wellknown Blasiusboundary

layer profile (1908) is widely used. For a uniform wall temperature distribution

or for a power law temperature distribution (T_,(_) -Too = A--r) in a fluid

with constant properties, the flow is also found to be self-similar. However, for a I

_,uid with variable properties, the flow is not self-similar if the wall temperature

I
I
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I is nonuniform. 1 The similarity solutions of the momentum and energy equations

with variable viscosity and a uniform wall temperature distribution are used to

I specify the inflow boundary conditions. The velocity, vorticlty, and temperature

I components for this similarity solution are denoted by _SIM(-£,_), _SIM(-_,_),
_zSlM(_), and TSIM(_,_). These components are obtained as described in

I Appendix A. For the active control simulations, the wall at the inflow boundary

is not heated and the similarity solution becomes the Blasius similarity solution.

I For the passive control simulations with nonuniform surface heating, the wall

temperature prescribed at the inflow boundary is used in determining the similarity

I solution.

I The streamwise coordinate, _0, specifies the location of the inflow bound-
ary. It is convenient, however, to specify the Reynolds number based on displace-

I ment thickness, Re6_, to fix _0. This Reynolds number is defined by

I Rent = _7='_l(_o)_voo (4.2)

I and is related to the Reynolds number, Re, by

I _°, =ReI_ 1 . (4.3)

The boundary layer displacement thickness is defined by

I
_':t-- _0_ II _--" I d_'. (4.4)

I
Thus the upstream coordinate, T0, can be determined by Equations (4.2) and (4.4)

I given Re_l , _oo, "0oo,and _SlM(_,_).

1 Nayfeh and gl-Hady (1980) found that nonaimilar boundary layer profiles are necessary in a

I stability analysis of nonuniform wall temperature distributions to even qualitativdy agree withexperimental data. In this work, the undisturbed flow is as solution of the full Navier-Stokes
and energy equation= and is thus a nonaimiiar solution.

I
I

III
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The complete set of boundary and initial conditions for the undisturbed I

flow is formulated below. The conditions are presented in dimensionless form

based on the nondimensionalizs, tlon given in Chapter 3. Since the undisturbed I

flow is two-dimensional, the w velocity and _. and w_ vorticity components are

identically zero everywhere sad are omitted here. In addition, the boundary con- I

ditions on the lateral faces of the domain (B-F-G-C) and (A-E-H-D) of Figure I
4.3 are also omitted since the base flow is two--dimensional.

4.4.1 Initial Conditions for the Undisturbed Flow I

The steady state solution to the governing equations can be obtained for I
any initial velocity, vorticity, and temperature distribution. However, computa-

tional time is significantly reduced if the initial conditions are close _o the steady I

state solution. Therefore, the sindlarity solution is used to initialize the flow field

for the undisturbed flow: I

=(=,y,=,o)= =s_,(=,y) (4.5a) |

v(z,y,z,O)--VSiM(Z,y) (4.5b) I
_=(-,y,_,0)= _=SXM(=,Y) (4.5c)

T(z,y,z,O)= TstM(Z,y). (4.5d) I

|
4.4.2 Inflow Boundary Conditions for the Undisturbed Flow •

The similarity solution for the fiat plate boundary layer is imposed at II

the inlet plane (A-B-C-D) as already described. The inflow conditions then are

the following: I

=(=0,y,z,t)= _s_M(=0,_) (4.6a) II
v(z0,y,z, t) = VSIM(ZO,Y) (4.6b)

!
!
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| _,,(=o,y,z,t) = ,.,,,,s_'._(=o,y) (4.6c)

I T(=,o,_,=,_)--Ts_M(=o,y). (4.0d)

I 4.4.3 Outflow Boundary Conditions for the Undisturbed Flow

At the outflow plane (E-F-G-H), boundary conditions are imposed so

I as to minimize the upstream influence on the flow. These conditions are

| _(=N,y,=,t)= -_(,N,y,z,t) (4.7a)
_v

[ b_-£=,(=N,y,=,t)=0 (4.7b)_2 {,l.tS .

-_-==(=N,y,=,Z)--0 (4.7c)

O---_--(ZN,y,z,t)= 0. (4.7d)'

I Equations (4.7) are derived from a consideration of the boundary layer equations

and the continuity equation. For large Reynolds numbers, the viscous term @z----_-

l is negligibie. When this term is neglected, the equations become parabolic every-

where. For the current investigation with the full Navier-Stokes equations, this

I term is neglected only at the outflow boundary for the _ Poisson, vorticity, and

l energy equations. Boundary condition (4.7a) is used to enforce continuity at the
outflow boundary.

I 4.4.4 Outer Boundary Conditions for the Undisturbed Flow

I The boundary conditionsat theouterboundary (D-C-G-H) are

u(z,yM, z,t)= 1 (4.8a)

I z,t) 0 (4.8b)
--_(Z,yM, =

| _,(=,_M,=,t)=0 (4.8c)

I T(z,yM, Z,t)--O. (4.8d)

I
I I I
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Equation (4.8a) denotes that there is no freestreezn pressure gradient imposed on I

the flow. Equation (4.8b) is derived from the continuity equation and taking Equa- I
tion (4.8a) into account. Condition (4.8:) is based on the physical consideration

that the vorticity is confined to the region of high shear at the wall. Condition I
(4.8d_ is also based on physical considerations. The thermal boundary layer for

water is much smaller than the fluid boundary layer and the temperat_xre gradients I

are confined to the wall region as well. I

4.4.5 Wall Boundary Conditions for the Undisturbed Flow

At the wall (A-B-F-E), the conditions for the undisturbed flow are I

.(=,0,=,t)=o (4.9.) |

,,(=,o,=,t)=o (4.9b) |
---._(z,O,z, t) = 0 (4.9¢)

-_z (z,0,z,t) = - 5_y----_ (4.9d)

T(z,O,z,t) = A(z)z _'. (4.9e) I

Boundary condition (4.9a) is the no slip condition and (4.9b) denotes r._ normal I
flow through the wall. Boundary condition (4.9c) is derived from the continuity

equation. The boundary condition for the wail vorticity, (4.9d), is derived by I

applying the v Poisson equation (3.72) at the wall. Previous stability investigations

by Fuel (1976) have shown that this boundary condition for the two-dimensional I

vortidty yields results in excellent agreement with experimental investigations. I
Finally, for the wall temperature, boundary condition (4.9e) is imposed.

This condition depends on the mode of control under investigation. The coe_cient I

A(z) denotes the level of heating and the exponent p denotes the type of wall

!
!
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I temperature distribution. For A = O, the wall is unheated. For the passive control

i investigations, A(z) is a constant As. For A0 _ 0 and p = 0, a uniform wall
temperature distribution is imposed. For Ao _ 0 and p _ 0, a nonuniform wall

I temperature distribution is ased. For investigations using surface heater strips

as disturbance inputs, A(z) is a specified local temperature distribution in the

I streamwise direction. The exponent p is zero for a heater strip simulation. This

i mean flow component to the temperature iaput at the heater strip represents the
amount of overheat due to the presence of the heater strip and is discussed in

I more detail in Chapter 6. So in summary, the wall bounda.,'y condition for the

temperature has the following form, depending on the mode of control:

I 1.) Temperature distribution for uniform wall heating:

I A(z) = Ao = constant (4.10a)

| p=0 (4.10s)
T(z,O,z,t) = Ao. (4.10c)

I
2.) Temperature distribution for nonuniform wall heating.

I
A( z ) - Ao - constant (4.11a)

I p # 0 . (4.1:b)

I T(z,O,z,t)- Aoz p . (4.11c)

I 3.) Temperature distribution for surface heater strip:

I p-O (4.12a)

T(z, 0,z, t) = { A(z) if ztm. _<z _ ztm,, i = 1,NHS; (4.12b)0

i otherwise.

!
II
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I

where 'NHS' denotes the number of heater strips activated, with each I

heater strip employed for zm_, _ z <__zm_,,. The choice of the function i

A(z) for the surface heater strips is presented in Chapter 6.

The enforcement of conservation of mass on the boundaries is necessary l

as already discussed. At the inflow boundary, mass conservation is automati-
i

cally satisfied since the similarity solutions satisfy the continuity equation. The 1

gradient condition:, (4.8b) and (4.9c) at the outer and wall bounda_-ies enforce

continuity. At the outflow boundary, the continuity equation is directly applied as 1

seen by bounds.,7 condition (4.7a). The complete set of boundary conditions for i

the undisturbed flow is shown schematically in Figure 4.4.
rill

4.5 Boundar 7' and Initial Conditions for the Disturbed Flow l

The disturbed flow problem is fundamentally different than for the undis- im
turbed flow problem and requires different boundary conditions than for the steady

flow. The conditions described below are three-dimensional and input periodic i

disturbances into the flow. These conditions represent a 'total flow' formulation

of the stability problem in which the disturbances are superimposed upon the I

undisturbed solution, i

4.5.1 Initial Conditions for the Disturbed Flow

The two-dimensional steady state solution provides the initial condition l

at time _ = tl of Figures 4.1 ana 4.2 for the time integration of the disturbed flow. i

This initial condition can be written as

u(z,y,z,tl) = UST(z,y) (4.13a) 1
= (4.lab) I
- O (4.13c)

I
!
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I w=(=, Y, =,_l) =0 (4.13d)

| _,C=,y,,,t_)=0 (4.13,)

I w.(z,y,z,t,) = w=ST (4.13f)
T(z,y,z,t,)= TsTCz,y), (4.13g)

I where the subscript 'ST' denotes the steady state solution. For the active control

i simulations, the initial condition at time t = t2 of Figure 4.2 is given by

U(z,y,z,t_)= UST(Z,y)+ U'(Z,y,Z,_2) (4.14a)

I v(z,_vzvt2)= VST(Z,_)Jr V'(Zvy,Z,'2) (4.14b)

I w(z,y,z,t_)"-w'(z,y,z,t2) (4.14c)

_ffi(z,y,z,t,) = w'(z,y,z, t,) (4.14d)

I w,(z,y,z,,,) : w',(z,y,z,t,) (4.1ae)

I _(z,y,z, t2)= W,ST(Z,y)+ w':(z,y,z,_,) (4.14f)

T(z,y,z, t2) = TsT(z,y) + T'(z,y,z,t,), (4.14g)

I
where the prime denotes the perturbation components.

I 4.5.2 Lateral Boundary Conditions for the Disturbed Flow

I The flow is assumed to be spanwise periodic a_d, as discussed in Chapter
2, this assumption agrees we]] with experimental observations. The choice of

I spanwise periodicity greatly facilitates the numerical method. The periodicity

conditions on the lateral boundaries CA-D-H-E) and (B-C-G-F) are

I
u(z,y, O,t) -- u(z, y, zk, t) (4.15a)

I v(z,y,O,t)= v(=,y,zk,t) (4.15b)

I w(z,y,O,t) = w(z,y,z_,t) (4.15c)

!
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_,.(_,y,O,_)--_.(_,y,_,,_) (4.15d) |

oaz(z,!l,O,t) = _z(z,y,z_,t) (4.15f)

T(_,_,o,_)= T(_,_,_,_). (4.1sz) |

4.5.3 Inflow Boundaz7 Conditions for the Disturbed Flow I

At the inlet plane CA-B-C-D), all disturbances are azsumed to be zero.

Therefore, the sindlarity solution is imposed:

v(z0, y, z, 1) = vsxM(zo, y) (4.16b)

w(z0,y,z,t) = 0 (4.16c) I

_a=(zo,y,z,t) =0 (4.16d)

c%(zo,y,z,t) = O (4.16e)

o;:(Zo,y,z,t) = cazsrM(Zo,9) (4.16f) I

T(zo,y,z,t) = TSlM(zo, Y). (4.16g)

!
4.5.4 Outflow Boundary Conditions for the Disturbed Now

is

Outflow boundary conditions axe inherently difficult boundary conditions I

to prescribe for the spatial stability problem. A radiation conditiou is desired |
which is transparent to 021disturbance wavelengths. For two-dimensional, small •

amplitude, monochromatic waves, Fasel (1976) has applied the following boundary
m

conditions to the spatial stability problem with large success:

_Z2(ZN, y,t) --" --O_r_Z(ZN,y,t ) (4.17a) I

192_ .

-_z2(ZN,y,t)= --a2..V(ZN,y,t) (4.17b) I

--a,.,o;z(ZN, y,t), (4.17c).__2(=N,y,_) = 2
I
!
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I where ars is the real part of the wavenumber from the resulting perturbation
2_"

i flow. The flow is _hns tuned to pass the disturbance of wavelength AN -- . The
O(rN

wavenumber c_n be determined iteratively if it is not known a priod (Fssel (1976)).

Equations (4.17) are derived by considering the form of the two-cfimensional dis-
turbance from linear stability theory, Equation (1.1):

1 u'(,,_,t)= a(y)ei(''-'°'). (i.l)

1
Differentiating Equation (1.1) twice with respect to z gives Equations (4.17). Only

the real part of the wavenumber is retained, but for the boundary layer al << a,.,

so the assumption is valid. With these boundary conditions, the disturbances at

the right boundary are sinusoidal and neither damp nor amplify there.

For the three-d_ensional flow, analogous radiation conditions can be

I derived from Equation (1.3):

| u'(,,y,z,0= ,:,(_,)_(a.+.,,-,,,) (1.3)

and the three-dimensional boundary conditions become

I a2_ _ST, 2_z2(ZN,_I,Z,t) = _ZN,y,Z,t)--ars_(ZN,y,z,_ ) (4.18a)

02_" 2 z,t) vST(ZN,9)) (4.18b)
I _'d(=N'_'z'O= -_'" (_(=N,Y, -

°_w " 2 z, t) (4.18c)

= - ,,,u_f(ZN,9,z,t) (4.18d)._i.ffi2 (XN, _,z, t) _2

-_-z2 (ZN,y,z, t) = --a_,_,(ZN,y,Z, t) (4.18e)

O2¢Oz" 2 Z,t) (gzST(ZN,y)) (4.18f)

O----i-(xN,y,:,t)= -%, (_,(xN,y, -
_T 2 Z,t) TST(ZN,_t)) (4.18g)

I _Z2(zN'y'z'') -"--_". (T(ZN, y, - •

I
I
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i

However, when th;e condition was applied, the two-dimensional propagating dis- i

turbsnces appeared to pass the outflow boundary, but the three-dimensional dis- i

turbances were reflected. The reflections were present for both the small ampli-

tudes and larger nonlinear amplitudes, although the reflections were more severe i

for the larger amplitudes.

Wave reflection is a problem in numerical simulations when finite corn- i

putational domains are used. However, if the integration domain is large enough

in the streamwise direction, the upstream influence of the boundary on the flow

is relatively insignificant. A propagating wave exhibits a characteristic wave front i

that is essentially a wave packet disturbance. In front of this wave packet, the flow

is undisturbed, i
To resolve the problem of wave reflections, s long integration domain

is used with an outflow boundary propagating ahead of the disturbances. The i

moving boundary is propagated sufficiently ahead of the disturbance waves to

minimize any upstream influence. The choice of a moving boundary, instead of i

a large integration domain for the entire time integration, makes the method

much more efficient computationally since fewer computations are required. The

boundary is propagated downstream with :he following equation: B
I

zo < =_ = =s, + v_(_- _) _<ZN fort _ t_, (4.19) I

where zs is the position of the right boundary, zs, is the position at time tt, I
and Vs is the propagation speed of the right boundary. If the outflow boundary

position reaches its maximum, zs = ZN, the boundary remains fixed thereafter, i
The boundary conditions (4.18) are used at the propagating outflow boundary

(E-F-G-H).(Note: For the computation of the undisturbed flow, this outflow i

boundary is fixed at zs = ZN.) i

!

1989012697-073



!
!

77

I 4.5.5 Outer Boundary Conditions for the Disturbed Flow

At the freestream boundary (C-D-H-G), exponential decay for the v

I velocity component is assumed:

|
--_(Z,YM, Z,t) -- (_(Z, yM, Z,t) -- _)$T(Z,yM)) (4.20a)- -_e

I where a* is a wavenumber. The boundary conditions for the vorticity and tem-

perature are

!
_(Z,yM, z,t)=O (4.20h)

I w,(z,yM, z,t) =0 (4.20c)

I wz(z,yM, z,t)--0 (4.20d)

T(z, yM, z,t) = 0. (4.20e)

n
Boundary conditions (4.20h), (4.20c), (4.20d) and (4.20e) follow from the same

i considerations given the undisturbed flow. Vorticity and temperature gradients

are concentrated in the region near the wall and the freestream boundary is far

i enough from the wall so that these quantities can be assumed to be zero. Note

i that only a boundary condition for the v velocity component is prescribed for the
velocity field. This is due to the fact that the u Poisson and w Poisson equations

I contain no y derivatives for the u velocity and w velocity, but only for the v
"velocity.

I The choice of a" will be discussed later in the context of the numerical

method. For now, a look at the travelling wave ansatz for a three-dimensional

I disturbance, Equation (1.3), along w:th the v Poisson equation (3.72) in the outer

I region leads to the following:

V_v(z, yM,z,t) = 0 (4.21a)

!
!
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or |

1 o_v o_v I _r. lR,.O,2(=,yM,z,t)+-_-i(=,yM,z,t)+._e_z_(=,yM,z,t)= O. (4.21b)

Dii[erentiatin 8 Equation (1.3) and inserting into Equation (4.21) leads to l

_(yt_) a2 + "r2Re @(IIM) = 0. (4.22) l

The solution to the above equation is 1

_(y_r)=cze-_" yW+c2e +_" y'. (4.23)

I
Since the disturbance is assumed to vanish at infinity, it follows that e2 = 0 because

the velocity fluctuations damp exponentially. Thus the _ velocity can be written l
as

v'(z,yM,z,_)= cze-_Yw ei(a=+_=-_t). (4.24) 1

DiITerentiation of Equation (4.24) with respect to the normal direction leads to l

_(z,yM,z,t) = - a2Re+ _i2v'(z'_"'z't)• (4.25) 1

Thus, considering a three--dimensional linear wave, a'LS T = Via 2 q-72 where the

subscript '[,ST' denotes ];near stability theory. Again, the choice of a" will be I

discussed in the next chapter, but appears similar to that derived by Equation I
(4.25).

_ _ Bound_Ooo_on._o_,_o_ur_e_F_ow I

(A-B-F-E) by superimposing on the steady flow a periodic perturbation. These

perturbations are introduced into the domain using one of two different techniques, I
depending on the application. In the first technique, localized time-dependent

!
l

I I l
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I normal velocity fluctuations are introduced within a narrow strip. In the second

i technique, localized time-dependent heating on a finite length heating strip cre-
ates the perturbations. The following boundary conditions at the wall are then

I imposed:

I _(z,0,z,t) - 0 (4.26a)

v(z,0,z,t) = v_(z,z,t) (4.26b)

I w(z,0,z,t) = 0 (4.26c)

| -_-=_(=,o,:,0+ -_-=_(=,o,:,0= _--_(=,o,:,0

1 a (Vz2v(z, O,z, t)) (4.26d)

| + a-_a-_
_y(z,O,z,t) = 0 (4.26e)

Oo,,=z, o'_=| _-=( o,=,0: -_.;(=,o,_:,_)
1 =

- ._e Vzv(z, O,=, t) (4.26f)

I T(z,O,z,t) = A(z)z p + T_,(z, z,t) (4.26g)

I Equation (4.26a) and (4.26c) are the no slip conditions. The v velocity compo-

I nent at the wall is prescribed by Equation (4.26b). This condition allows for the

introduction of localized streamwise, spanwise, and time--dependent velocity dis-

i turbances into the flow field and simulates a suction and blowing strip. Equations

(4.26d), (4.26e), and (4.26f) provide the boundary conditions for the three vortic-

I ity components at the wall. Equation (4.26d) results from applying the definition

I of vorticity (3.67), the continuity equation (3.35), and conservation of vorticity
(3.70). Equation (4.26e) results from applying the definition of w v at the wall

I (3.67b) and Equation (4.26f) results from applying the v Poisson equation (3.72)

at the wall. The boundary condition for the temperature (4.26g) is similar to the

!
I
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boundary condition for the v velocity component. This condition allows for local- I

ized streamwise, spanwise, and time-dependent temperature perturbations to be

introduced into the flow field. Several comments are in order regarding boundary I

condition (4.26b) and (4.26g). For both the passive and active control simulations, l
a perturbation input into the flow field is necessary to create a forced disturbance

flow. Whether the initial disturbance input into the flow is created through a l
suction and blowing slot or by a surface heater strip is not important. For the

active control simulations, however, the disturbance at the actuator is created by i

temperature perturbations (Equation 4.26g) on a finite heater strip with proper

phase and amplitude control applied. The functions _,n(z, z, t) and T,_(z, z, t) for 1

the suction and blowing input and for the temperature input have the following

forms, depending on the mode of control: 1

1.) Passive control l
a.) Disturbance input with periodic suction and blowing:

v_,(z,z,t) = { r(t).f,(z,z,t) if ZSB_ _<z <_ zS_._; (4.27a) I0 otherwise.

Tw(z,z,t) -0 (4.27b) I
or

b.) Disturbance input with periodic heating: I

_.(z,z,i) --0 (4.28a)

T_(z,z,t)- { r(t)fT(Z_z,t) if zHB_ _<z _< zI-m_; (4.28b) I0 otherwise.

2.) Active control I
a.) Disturbance input with periodic suction and blowing and flow controlled

with periodic heating: I

v_(z,z,t) = { r(t) f_(z,z,t) if ZSB, <_ z <_ ZSEL; (4.29a)
0 otherwise. 1

{ .fT(z,z,t) if ZKB, _< z _<zHE,, i = 1,NHS; (4.29b)

Y_o(z, z, t) = 0 otherwise, |

I
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| or

i b.) Disturbance input with periodic heating and flow controlled with periodicheating:

I t_.(z,z, _) =0 (4.30a)

I T=,tzzt_-fr(t)fT(z'z't),, , - L0 other_se.ifzm3t<z<zm_'; (4.30b)

'7' _.. _ f Jr(z, z, t) if zrm, < z < zm_,, i = 2,NHS; (4.30c)
I "=_"' " "/- [ 0 otherwise.

Again 'NHS' denotes the number of heater strips employed for the active control

I simulations. The functional choices for fo(z, z, t) and fT(z, z, t) will be discussed

i in Chapters 5 and 6. The ramp function r(t), used in this work has the following

form: ( 0 if to < t < tz;

| ,'e ! [R_(t-t_-r,)'l _ --

i t 1 if t > t2.The ramp time T,. - t2 - tl is an input parameter which is specified as a fraction

I of the disturbance period. The ramp amplitude parameter RA controls the rate
at which the ramp ampLitude develops.

I Finally, the disturbed flow boundary conditions described in this section

are shown schematically in Figure 4.5.

!
I
I
I
I
I
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CHAPTER 5 I

NUMERICAL METHOD I

!In this chapter, the numerical method for obtaining an approximate so-

lution to the mathematical model presented in Chapters 3 and 4 is developed. The I
R

choice of the numerical algorithm was made after weighing several factors. Impor-

are accuracy, stability, and rate of convergence. In addition I
taut considerations

to the mathematical considerations are computational considerations that include

computational speed, storage requirements, and the ability to vectorize. As al- I

ready mentioned in previous chapters, Fasel, Rist, and Konzeimann (1987) have

developed a numerical method for solving the three--d_mensional spatial stal_illty

problem. This algorithm serves as a building block in this work and requires the I

addition of the energy equation and the viscosity variation with temperature. The
il

numerical method is described in detail in the following sections, but first a brief I

summary is given.

In the numerical method, standard central finite difference approxims. •

tions are used in the streamwise and normal directions and a spectral represents- I

tion is used in the spanwise direction. The flow variables are assumed to exhibit

periodicity in the spanwise direction and are approximated by a finite Fourier se- I

des, With the use of this spectral ansatz, the three-dimensional governing equs- I

tion system reduces to 3K vorticity transport equations, 3K Poisson equations U

for the velocities, K energy equations, and K viscosity equations, where K is the

number of Fourier modes retained in :he spectral approximation. The resulting

two--dimensional system of equations is solved in Fourier space. The vorticity I

transport and energy equations are advanced in time using one-sided backward

!
!
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I differences. At every time step, the vorticity transport and energy equations are

I elliptic in nature. The Pqisson equations for the velocity modes are also elliptic.
This set of elliptic equations is solved for using a Gauu-Seidel llne relaxation

I procedure. The nonlinear terms are updated throughout the iterative procedure

with the iteration loop contimdng until convergence is achieved. The numeri-

t cal method is second order accurate in time and in the streamwise and normal

directions. Spectral accuracy is obtained in the spanwise direction.

I The numerical algorithm is basicaliy the same for computation of the

I undisturbed flow and the periodically forced disturbed flow except that the bound-
ary and initial conditions differ as discussed in Chapter 4. These differences in the

I boundary conditions will be pointed out.

I 5.1 Computational Domain
The spatial domain described in Section 4.3 is discretized in the stream-

I wise, normal, and spanwise directions into N, M, and K intervals of lengths Az,

Ay, and Az respectively. The intervals N, M, and K are input parameters and

I this spatial computational domain is shown in Figure 5.1. The grid point indices

i are denoted by n, m, and k so that
zn - z0 +nAz n = (0,1,2,...,N)

I Y,r, -mAy m = (O,1,2,...,M) (5.1)

i z_ = Zo + kAz k = (0,1,2,...,K).
Similarly, the time increment is At and I is the time index so that

I tc - to +lAt l = (0,1,2,...,Lx,...,L2,...,L3,...L) (5.2)

I where L '.s also an input parameter with Lx, L2, and La corresponding to times

i tx, t2, and ts respectively.

!
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The followin 8 convention is adopted for relatin 8 the physical location to !

the discretized one:

ho,,,,_ = _z,,, y,,,, zk, _z)

(5.3) |
:z'J.,,._=T(_,,.y,,,,_:,.,_0

l,L,,,,,,,= l,(_,,,y,,,,z,,t,). |
Since the flow is spanwise periodic, it follows that

U _ t I

_i l I
O,n.,m " faPqk,n,m

(,.4)
_Oin,m l

, I
/_lO,-,m =/_O,n,m

for intesral values of q. I

5.2 Spsnwise Spectral Approximation I
In spectra/methods, the solution to a problem is represented as a trun-

cated series of k_own functions for the flow variables. A continuous real fuuc- I

tion _b(z) which is periodic in the spanwise z direction with a period of 2_'; i.e.,

,- |_b(z) = _b(z + _), can be approximated by

_=_ I
?_==-,_

where the Fourier coefficients _/, are complex conjugates I

and "y is the spa_wise wavenumber. The velocity, vorticity, temperature and I

viscosity are assumed continuous and periodic and so are expanded in a series of

I
I

1989012697-081



85

the fo_,v. ")f Equation (5.5) where

¢#= 0,,v,w,o_.,o_,,_,,r,_) (_.7_)

and

_,= (u,v,w,n., n,, n._e,._) (5.7b)

so that

• ,,(_,y,_,t)= _ v,(.,_,t),'_. (5.8b)

_.(_,y,_,t)= _, n.,(_,y,t)e'h'' (5.84

_,(_,y,z,t)= _ n,,(.,y,t)e" (5.8e)

_.(=,y,_,_)= _ n.,C=,_,t)e"'" (5.8f)

T(=,..,_,_)=_ e_(=,y,t),"_" (_.8s)

_(=,y,_,,)= _ _(.,y,_)¢'_'. (_.8h)

Before substituting the expressions (5.8) into t_e governing equationJ, the follow-

ing nonlinear terms are defined:

=(u.=_),,- (_.v_)u (s.ga)
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d = (u. v_) T (5.90 |

whereaisthevectora= [a,,_,,a,],bi, thevectorb= [b,,b,,b,],_-(ithevector

¢ is u defu,ed by Equation (3.69). The non,near term for the energy equation d I

is a scalar. The spectral representations for these nonlinear terms are I

a(_,_,_,0=7_ A_(_,Y,Oe'_" (5.10a) |

b(z,y,z,t) = E Bh(z'Y't)_O"T* (5.10b) I
k-----_

c(=,y,=,O=_ c,(=,y,O_'_" (5.10c)

k=T I
4=,_,,,0= _ D,(=,y,O_'_'" (5.1Od)

_=-T I
where.4.= [A,,A,,A,],B = [B,,B,,B,],sad C = [C,,C,,C,].Substitutionof

the expres_,ons (5.8) and (5.10) into the governing equations (3.35), (3.37), (3.68), I

(3.70), (3.71), (3.72), av' (3.73) yields a new set of governing equations in terms

nf F _-ier modes rather than physical variables. The resulting equation system is I

ogh OV_ I+ -_- _- iTk W_ = 0 (&lla)

09,, Of_. i@----_+--_--+ i_,kn,, =0 (5.11b)

cgf/,.

+ A,. = B,. + C,, (Snc) I
Orgy.

+ A,,= B_,+c_, (5.11d) |Of/,i
+ A,. = s,. + c,. (5.n_)

I
I

II ,, I
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°_v_ (5.110
OaUkoz2 72k2 Uj, = -i Tk _y,. OzOy

1 02Vk 0_Vi -y:k: Ofl:_ (5.11g)
Re Oz2 + Oy"-'T - "-_'e Vh = i T k flz_ O=

O_gr, Olin,
i7 k_ (5.11h)Oz2 7_k=W_ : 0z

0Dr, 1 02Oi, o_O_ 7:k:

+ Di = + 0y 2 --_---eOi (5.11i)Re 0z _

for

The viscosity variation with temperature 54_(_) completes the set of governing

equations. The manner in which this viscosity relationship is incorporated ;nto

the numerical method is explained in Section [ 3.6.

Several comments regarding Equations (5.11) are now made. In deriving

the system of equations in Fourier space, the following re'aationsfor the first and

second partial _lerivatives with respect to z are utilized:

0_
o-";= _ i.r k,_,'_" (5.1_a)

i=-2_

Oz----i _ _ -7_k2'_e °'': . (5.12b)
k=-l_

These expressions apply for the velocity, vorticity, temperature, and viscosity,

•mining that Equation (5.5) is twice differentiable. Since the physical variabies

.,e purely real, Equation (5.6) applies. Therefore, the mode equations need only

be solved for nonnegative values of k; i.e., k = (0, 1,..., _). The conservation of

mass equations (5.11a) nee4 to be enforced only at the boundaries as is the case

for the physical mass conservation equation (3.35).
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5.2.1 Boundary and Initial Conditions in Fourier Space for the Undisturbed Flow

The boundary and initial conditions in physical space that axe presented I

in Chapter 4 axe converted to corresponding boundary and initial conditions in
IBt

Fourier space _ the relatiome (5.8). I

Since the undisturbed flow is two-dimetmional, the three-dimensional it
itcomponents axe zero everywhere for t < h, or

w0Cz,y,t) = n,o(z,y, 0 = n,oCz,y,t) = 0 I

and for k > 0:
i

e_(_,y,t)= v_(=,_,t)= w,(-,v,0 = 0

fl..(z,y,t)=fl,.(z,y,t)=flf,(_:,y,t)--(_i,(z,y,t)=O. (5.13) I

boundary conditions for the zeroth mode axe purely real by consideration of I
The

Equation (5.6).
I

The initial conditions in Fourier space follow from Equations (4.5): I

/-f0(Z,y, 0) -----_$IM(Z,Y) (5.14a) I

v0(z,v,0)= _s,M(_,V) (5.14b) |
f_,.o(z, y, O) = _,s,,'M(z, y) (5.1ac)

0o(z,9,0)- Tszu(z,9). (5.14d) I

At thv inflow boundaxy, the boundary conditions follow from (4.6): I

v'0(,0,v,t) = _sIM(_0,V) (S.15a)
Vo(Zo, 9, t) = vSZM(z0, y) (5.15b)

n.o(_O,v,t)= _,.smO,o,y) (5a5c) I

®o(Zo,9,t) = T$,2w(Zo,9). (5.15d) I

!
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i Fourier space outflow boundary conditions (4.7) are

I aUo, ,, aVo,
-_--,t'N,Y,V= --'_-t'N,Y,0 (5.16a)
a2vo: .

| -_-_--=_:'N,Y,0=0 (S.10b)
_PN,,,.

m _ (zN,9,t)= 0 (5.16c)_eo.

I '_-_'-(,¢N, _, l_) --' 0 • (5.16d)

Following(4.8),theouterboundaryconditionsbecome

!
Uo(Z,yM,t)= 1 (&17a)

m ,OVo z
•_--"( ,yM,t)= 0 (5.17b)

m O.o(,,,,.,:o
eo(_,yu,0= o. (5.17_)

I
Finally,atthewalltheboundaryconditions(4.9)inFourierspaceare

m uo(,o.,'-0 (5.18a)

m 0,)=o (5.18b)
0V0.

m --_--(-,o,0 =o (,_.zsc)
011,,,. _Vo
-_-(_,0,_)=- aT(=,0,0 (s.lSd)

| Oo(,,o,0=A(_)_,. (s.lSe)

!
5.2.2Boundaryand InitialConditionsinFourierSpacefortheDisturbedFlow

m AnP!ogous inthephys{calspe_ceinitlMconditions(4.13),theinitialcondi-

tionsinFourierspaceattimet= tlforthedistuxbedflowarethetwo-clinensional

!

!
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steady state solutions: I

u0(_,v,q)= _ST(_,Y) (S.19a) |

Yo(Z,y,tl)= ,sT(z,y) (5.19b) I

n,,(=,y,t_)=_,ST(=,V) (5.1_)

Oo(z,y,tl)= TsT(z,y). (5.19d) I

All other components are identically zero at time t - tl. For the active control I

simulations, the heater strip is turned on at time t - t2leading to the foUowin 8 I
initial conditions at the wall for the temperature:

for k = O: I

e0(_,v,t2)= Owo(_,t_), (s.20a) |
for k = 1:

e_cz,v,t:) = e,t(z,tx), (5.20b) i

and for k > O: I
eb(z,v,t,) = 0. (5.20c)

I
At the intiow boundary, the two-Mimensional physical space conditions

(4.16) transform to the following two-dimensional Fourier space inflow conditions: I

u0(_0,v,0= _sm(_0,v) (5.21a) I
Vo(zo, V, t) - vsxM(zo,V) (5.21b)

n_o(=0,v,0= _,s_M(_0,v) (5.21c) |

e0(,0,v,,) = TszM(,,'o,V). (5.21d) I

All other components are again identically zero. I

!
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I From the physics/space conditions (4.18), the Fourier space outflow con-

dltious are

I for k = 0:

I "_-zz_ZN, r,Y,t) = _Z 2 (ZNa,y)--C_wUO(ZNs,y,t) (5.22a)

82vo

I -_-Z2(ZN,,_, t) = --a_w (Vo(zNa,y,t) --VST(ZNa,y)) (&22b)

Wo(zNa,Y,_) = 0 (5.22c)

I i_=o(ZNa,Y,t)= 0 (5.22d)

n,o(ZNa, Y, _) =0 (5.22e)

I °_n'_ = _) _',ST(=N,,Y)) (5.2200.2(=N.,Y,_)= -a..(n.o(=N.,y,-

I o_O,o._(ZNa,y,t ) 2 t)- TST(ZNa,y)) (5.22g)= -a,,, (O,o(ZN., y,

and for k > O:

I °_2Uk" t) -a_,U_(zNa,y,t) (5.22h)"_-z2(ZNm,Y, =

I _V_,_-=_t=N.,Y,_)---_..2V_(=N.,y,_) (5.221)
_W_

I -- -- C:v'_vWh( Z Ns, _/, _) (5.22j)
8z=(zN,,y,_)

-" -ar.nf,(ZNa,y,' ) (5.22k)

--a,s£yh(zNa,Y,_) (5.221)az2 (ZN_,y,t)= 2

I _f_,, " 2 fI,,(ZNB,y, t ) (5.22m)"(=N.,_,0= -_,.

i _eh. 2 el,(ZN.,y,t) (5.22n)
_(ZN.,y,_ ) ------_,..

Here the subscript 'Ns' denotes the location of the moving boundary.

I At the outer boundary, the physical boundary conditions (4.20) become

for k=O:

"_-(Z,yM, t) = --'_==_e (V0(z, _/M, t)- VST(Z, yM)) (5.23a)

I
!
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n_.(z, yM, t ) --- 0 (5.23b) I

n.o(Z,_;.,0 =0 (5.23c) |
g_,_,(z,yM, t) = 0 (5.23d)

eo(f,y.,t) = o, (5.2_) |

and for k > O: I

_-_( z, yM, t ) -- - a-_ReVh( z, 9._r, t ) (5.23f) I
N,,(z, yM, t)--O (5.23g)

fZy,(z,yM, t) = 0 (5.23h) I

flz,(z, yM, t) - 0 (5.23i) I
e_(ffi,y.,0 = 0 (5.23j)

The appropriate choice of a_, is now discussed. In Fourier space, the Vh Poiuon I

equation at the outer boundary follows from (4.21a) and (5.11g), or I

1 _vh _vk, 72k2

Re (gZ 2 (Z'YM't) -t- _y-'--_LZ, yM,t) -- a----e-Vk(z,yM,t) = 0. (5.24) I

Equation (1.3) is modified to include several spaawise modes: I

i,ffi_:

,'(z,y,z,/)= _ _'k(9)e ;'(''=-/_'+k'') (5.25) I
k-----_

where i

!
Differentiating Equation (5.25) with respect to z and inserting into Equation (5.24)

leads to I
_h a 2+72k =;., ,
"--_-(9M) Re vl, tyM) -- O. (5.26) !

I
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l As in Chapter 4, the exponentially growing solution is neglected ,&nd the the v

I perturbation velocity becvmes:
_=_

I v'(z, yM, z,t)-- _ cle-__'._'e i('=-_t). (5.27)

I After di_erenti_.ting Equation (5.27) with respect to 9, the appropriate choice of

a t becomes a t - _/a_ + -f2k2. As discussed in ChaFter 4, only the real part of

I the wavenumber is retained since ai < < ar for boundary layer flows.

Finally, from the physical space conditions (4.26) for the wall boundary,

I the Fourier space boundary conditiorq become

I for k=0:

I Uo(z,O,t) -- 0 (5.28a)
Vo(z,O,t)- V_(z, t) (5.28b)

I Wo(z,O,t) -- 0 (5.28c)

n.,(=,o,O= o (5.2Sd)
nvo(z,o,t ) -0 (5.28e)

I On'° "z, 1 2_z'-= ( 0,0 = -'_;%Vo(z, 0,0 (5.28 0

I Oo(z,O,t) - A(z)z J'+ O.o(Z, t ) (5.28g)

where

O= O=

| Vo'=_=,+R%-_,
I and for k > O:

I U;_(=,O,t)-0 (5.288)

I Vi,(z, O,t) -- V,,.,(z,t) (5.28h)

!
I II q |

1989012697-090



I

I
94

I

w,c_,,o,t)=o (5.zsi) |
02fl_.,

_(=,O,t)-,'/e'fl.,(=,O,t) = -_,.,O,t) I

+ _V:V,(z,O,t) (5.28j) I
n,,(,,o,t) =o (s._k)

-_O,,o,t) = i..:kn.,(,,o,t) I

-_vIv,(.,o,,)(s.281)|
Oh(z,O,t)---O,o(z,t) (5.28m)

I
where

V I = _ + Re Re

The V velocity mad temperature boundaz3r conditions at the wall depend on the I

mode of control as discussed in Chapter 4. They become the following in Fourier

space: I

1.)Passivecontrol

a.) Distttrbance input with periodic suction and blowing: I

for k =0: I

Vwo(z,z,t) = { ;(t)evofvo(z,t) ifotherwise.ZSB_<Z<ZSE1;(5.29a) I
fork=1:

_-(,),.,:.,(-,0_f.,..<-.-<.,_,;(_._b) Ivw,(:,z,t) [o otherwise. m

and for k > I: I
I

Vw_(z,z,t) ---0 (5.29c)

for all k: I

Tw,(z,zst)-O (5.29d) I
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| or

i b.) Disturbance input with periodic heatins:
for all k:

| v,,,(=,=,O= o (5.30,.-.)

I for k=O:

O,,o(=,=,O{ A(=)=,+ r(O,'Oo/So(=,,Oif =_, _.<=_<=F=,(5.30b)
I 0 otherwise.for k=1:

| e,,,(=,=,O={o"_0'°'/°'(=_'0ifoth°_,ise.=.,,.-<=-<=_'; (5.3o_)
and for k > 1:

I e_,,(=, z, 0 =o. (5.3od)

I 2.) Active control

a.) Disturbance input with periodic suction and blowing and flow controlled with

I periodic heatins:

I for/¢ =0:

v,,,o(=,_,0= {"(O_Vo/Vo(=,Oif=s,=,,_<=_<=s_,; (5.3z_.)
I 0 otherwise.for/==I:

I _.,_=,z,,)={"_1'''i''/='')o o,,.o,._,o.i_'"__=_.=_,_ /_.:,_b)
I and for k > I:

V_,,(z,z,t)=O (5.31c)

I for k = 0:

I O'_°(z'z't) = { 0_e°fe°(z't) otherwlse.ifZHB__<z _<zHE,, i= 1,NHS; (5.31d)
for k=l:

!
!

K I II I q_ I I I I I II
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e=t(z'z't)={oetfet(z't) otherwise.ifzlm_-<z-<ZH_'i=l'NHS;(5"31e) I

and for k > i: I

Ow,(z,z,t)=O (5.31f) I

°r |
b.) Disturbance input with periodic heating and flow controlled -_th periodic

heating: I

for all k: I
w

Vwo(Z,z,t) =0 (5.32a)

for k =0: J

Owo(Z,Z,t) = _ r(t)eeo/eo(z,t) i, _t <z< zl:_t; (5.32b) a
L 0 otherwise. i

Owo(z,z,t)_ _ feo(z,t) if ZHB,_<Z < Ze_,, i= 2, NHS; (5.32c)
L 0 otherwise. J

for k = I:

O=,(z,z,t) = { ;(')eetfet(z, ') ifzs_t < z <zHB';oth_'_vise. (5.32d) I

fel(z,t) ifzHB,<, zHz,,i-2,NHS; (5.32e) i(=,=,t)=
Lo otherwise.

and for k > 1: I

e,.,(=,z,0 =o. (5.3_)

!
A few remarks are in order regarding conditions (5.29) through (5.32). The func-

tions f,(z, z, t) and .iT(Z, z, t) axe chosen to be of the followin$ form: I

f=(z,z,t) = ],(z,t) (e,o + e,t cosTz) (5.33a) |
JT(Z,Z,t) = ]T(z,t)(_ro + eTt COSTZ)• (5.33h) l

I

!
I I II !
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I This particular form of the z dependence ha_ several implications. The distur-

bances are introduced throush the zeroth and first modes only. The higher modes
emerge in the computations through nonlinear interactions only. The parameters

I e,po, evl, _7"0,and e_,l dete_ne the two-dimensional and three-dimensional in-
put amplitudes. By choosing these parameters to be purely real constants, the

I disturbance waves e_Mving in the flow field are such that u, _, _0:, T, and _ are

symmetric with respect to the plane z = 0, while w, _z, and _ are _tisymmetric

I with respect to z = 0. Therefore, although Equations (5.11) are in 8enersl com-

plex, only the real parts of Uk, Vk_ f/z,, Ok, and A4k and the imaginary parts of

I Wk, _=_, and f/y_ are calculated and stored.

I 5.3 Implicit Finite Difference Method

The choice of the numerical method to solve the two-dimensional equa-

l tion system (5.11) is based on several factors as already mentioned in the intro-

I duction to this c_apter. The numerical method is first presented and s discussion
of these different considerations follows.

I The numerical technique used in these simulations is a fully implicit finite

dii_erence method. The method is fully implicit in that all the non_rnear terms are

I evaluated at the most recent time level. A three-level difference scheme is used

to obtain second order accuracy for the ti_e derivatives. The spatial derivatives

I in the streamwise z and normal y directions are approximtt,*ed in the interior of

the domain using standard second order central dif[erences. The time am] spatial
discretizations are as follows:

I O@k, 3'_k(z,!/,t)- 4_(z,!#,t- At) + #k(z,!J,_--2At)
"-'_"t z' _/'t) -- 2At

+ O(A_ 2) (5.34a)

0 krz + Ax,y, )- -
"_"z ' ,y,t)-- + O(Az 2) (5.34b)

I 2 Az

I
I Ill II "
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,I,_,(z,y+ e,y,t)- ,I,_,(_,y--_,y,t) I
-'_"(,,y,O-- 2,,,,y + 0(,",__) (5.340

_,I,_,. . ',I,h(=+ ,',z,_,0 - 2,I,,,(z,_,0 + ,I,j,(z- ,',_,y,0 I
-_-..Cz,_,0 = _=2

+ o(_=2) (s.34d) |
_@b. ,I,_,(z,_+ ,_y,_)- 2+_,(z,y,0+ ,I,h(z,y- A_,0
--_-rt',m,)= Ay 2

+ O(Ay:) (5.3_) |

dP,I,_,, ,I,_(z+ Az,y+ Ay,t)- <I,_,(z- Az,_+ Ag,t)

._qz,9,1) = 4Az A_, I

+ -,I,_,(z+ _,z,y- ,',y,_)+ ,I,_,(z- Az,y- Ay,0
4 Az A9

+ o(A_',_y') (5..'_) |

or in index notation: I

0@[' 3@_,_,._-4_ '-I '-2_-- 1,,.,m+ _,,.,m

a_h,,,,_ _. + o(A_:) (_.3_a) |
-- k,n-I-l,m -- k,m-l,m

k,.,,. _ + O(Az') (5.35b)

! 1 1

_,I, I't _,,.,+,,.,, - 2 ,Ih+,.,,,,,, + _,,,.,__,,,.,,

o--Ti,,,,,,,,' _ + o(_+') (_.3_d) |
(I}k,_,m+ 1 -- 2 t#k,n,,m "4- k,n,,m--I

_, .,-,,'., = %-_ + O(_y') (5.35e)

"'I' ' ' ' ' |

+ O(Az', Ag'). (5.35f) I

The computations/molecule for this second-order approximation is ,*hown in Fig- I

u,_. ,.2.

Application of the above difference approximations to Equations (5.11c) I

through (5.11:) leads to a system of 7/(" nonlinear equations for calculation of the I

I
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I flow variables at the dis:;retization points (Equations (5.11a) and (5.11b) serve

i only as a check on the quality of the solution.). The addition of K equations for
computation of the viscosity at the grid points completes _.he equation system.

I This diff_n'ence equation system is solved using a line iteration method ._._t_ simul-

taneous iteration of all 7K equations. The line iteration proceeds in the z direction

I for Equations (5.11c), (&lid), (5.11e), (5.11_), and (5.11i) for the calculation of

i N,_, _, nzk, V_, and ek. The unknown variables are obtained on grid lines
parallel to the y axis using a direct method for t_diagonal systems of equations.

I However, the discretized systems that result from Equations (5.11f) and (5.11h)
for the evaluation of :he UI, vdoci_ies and the Wk ":elocities are solved with the

I sweeF proceeding in +he _ dlrectio_, _,mce the y derivatives for Uk and
iteration

Wh _,o not appear in these equations. The same method f_,_rtridiagot_al systems

I is used with the unknown _-iables obtained on grid lines para/lel to the z axis.

I The U'_ velocities and W_ velocities are updated after each iterat;ve sweep in the
r directiou. A detailed description of the numerical procedure is now given.

I 5.3.1 Discretization of the Governing Equations in Fourier Space

I After applying the time and spatial finite difference relations defined

above to the Equations (5.11¢) through (5.11i), the following discr_tized equations

I result:

C_, _5.36a)

I 1 (3 , ,-z ",,,.,.)+A,,. .... =B,,,., +
2 A-'-"t flw".... - 4 fiT,..... + _,-2 l _ C_,.,..(5.36b)

1 ('3n_ 4 ,-z '1'-2 )+ ' ' ' (5.36c)

I . z U l U z
-- _ (U/,,,_+z,,. - 2 k,.,_ "_" l,,.-z,._) _2L,., t-- "7 '= U_,=,m = '7/CN_Z....

l
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1 (vz o_l ± _t _ I
Re-_z2 k'k,n+l,m--" h,,_,mT _,)_--I,_/

- 2_2

- _,kn;,..- ! (a',,. ,. - a;,. ,..'_ (s.3_,)
'' 2_= \ '+' ' - / I

1 l l i 2 =W _(wA,_+_,,_- 2w_,_,,_+wL,.__,.,) -,y _ _..,_,=

_,"y,.,.+).,. -'"y,.,._,,.) _'_"_y_,"i,,.,,,,,,,+z- h,,.,.,,,,,-z) (5.36f)

z (e' '-' e;,.,,,.)+ ,,.,_ = |2A""_ 3 k,,_,,,_- 4 el,,n,m+ z-2 D t

z - et e_ I1 (Ol,,_+1,m 2 S,,,_,m+ 1,,,_-z,m)Re Pr Az 2

1 ®l 0 _ 72/¢2 O t (5.36g)

4" Pr/%z: ( _,_,m+z - 2 e_,,,_,,n 4- _,,_,m-z) - Re P-==-==_k,,,,m I

for

I
, Im = (1,2,...,M- 1), mad l= (2,3,...,.

In the above equations, the imaginary unit 'i' has been eliminated by taking I

into account Equations (5.33). Since the Fourier variables axe either purely real I
or purely imaginary, this imaginary unit is replaced by a + sign or a - sign,

depending on the terms in the equation, I
The iteration loop for the above difference equation system is now in-

troduced. The iteration index is denoted using the superscript 'i'. The nonlinear I

terms axe calculated at the previous iteration level, but several terms axe added

at the current iteration step and subtracted at the previous iteration step. These I

a_dditional terms axe necessary to insure diagonal dominance of the tridiagonal I

I

1989012697-098



!
1

I01

I system and to improve the rate of convergence. These term_ are also chosen so

that the coefficients in the trid]agonal matrix are constants. Therefore the entire

I tridiagonal reduction does not have to be made for each new iteration or time level.

I Part of the reduction is done before the calculation begins. This is an important
aspect to the numerical method because tridiagonal solvers inhibit vectoriza_ion

I because of their recursive nature. This reduction scheme is discussed later. First

the terms to be added to the nonlinear terms A l B 1 C l and D z

I are as follows:

I _, ,,.,_, 1 ( '.' _.o'.'-') (o._oIk,.,._ = "-"I,,,,,,,, + _ u Sr_,,. 2 N=_.... - - "'xL.,.

B t n_,i-1

I k,n_tri _ a_lt,rgtr_

I l ro,, o,, o,,, o,,, ) {_3_)+ _ _-x_ .... +, + - -"'Xk,_,m--t "'Xk,_,,I,_+t "'Xk,_,_,-- t

I C' _,_-I (5.37c)

Dt hi,i_ 1 1 ( Ol'i 9 t_ l'i-1 _ (5.37d)k,r_,m - _"h,n,,,_ + _ u STs,.. 2 _,,_,._ - " " _,,_,r_)

m k - (0,1,...,K)) n = (1,2,...,N- 1),

m = (1,2,...)M - 1), and I = (2,3)...).

When the iteration loop has converged, the above additions to the nonlinear terms

I cancel. The terms added to Equations (5.37a) and (5.37d) do not have anything to

m do with the difference approximations, but are added to improve the convergence

characteristics of the iteration loop. These terms stem from the u-'_'z convective

m term. The choice of _'ST,,,. is made since this term is used only for diagonal

dominance and so the trldiagonal system does not have to be completely reduced

!
m

, I
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I
at each iteration step as would be required if rrI'i-: would have been used. For" 0_/t_m

the undisturbed flow computation, the similarity solution is used for USTN.,, i.e., I

USTx,. = USIM_.,,,, so that the coefIicient matrix remains constant. The term=

added to Eqr_tions (5.371)) result from the diffusion term _,V_. This term is I

a quadratic nonlinearity and this nonlinearity would have caused the tridiagonal

systems to have nonconstant coe_cients. Therefore additional terms were c._osen i

without the variation in viscosity. The convergence properties are not &oreatly I
a_ected by a_cUng a viscous term with uniform viscosity and the coefficient matrix

remains constant. The &rst additional term is from the center grid point of the i82fI=_ _fl,,_

term _, the second and fourth terms are from _, and the third term is

a2fl=_ I
from _. No axiditional termn are added to Equations (5.37c) which contain

deri,rative_ of the viscosity.

J.utrodudng the additional ter,._A from Equations (5.37) into the dis- i

cretized Equations (5.36) and rearrangins leads to the following set of discrete i
equations:

-- fl hi I
ak,m,m �"(3Ay' 2Ay__2 _,'k'Ay' Ay' )_,,, I

+ \ 2 At + Re Az2 + 2 + Re + _'_'zuST_°" -:_ ....

-- f_i,i

A_2 (4 '--1 .1--2 _ (B/,i-1 _1,i-1 ,4l,i-! I_-_ fl._ .... - ._,.,.,/+ Ay 2 \ ._.... + _._,.,. - --._,.,..)

-- fll,i

"']llb,a,m �€�i

(3 Ay= 2 Ay 2 ?=k=Ay 2 Ay= ) flz,i+ \ 2/x_ + Re Az"--"--£+ 2 + Re + "_z usT_'" "-_ ....

-- _/,i = IYh,_,m-t

°,,,.,-'-' I
I
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A9' -'"-1 (n '''-_ n';_J._,I + ==.,.a,,....- ....+,+ )

I _ fll, iZk,m,_+t

(3 Ay: 2 A92 7= k=Ay = Ay = ) fzt,i+ \ 2 At + Re Az 2 + 2 + Re + _z usT_''" --="....

I -- f_l,i =

I A_ (413,_ z _flz_ = _ (B,,i_ x C,,,_z _A,,i_ 1 .__'_ \ =',,,,- =_.... ) + Ay2 \ =',,,,- + -=,,.,. =_.... )

AY= -z,i-1 (,_,,-_ fZ1'_-1 '_ (&38c)+ "_"z t=sr_,._=,.... - _..=,.... +_+ =,..... ,/

i - rr"i (2 "_=k'Az=)rrz'' rrz'' -.TkAzZ£_,_,,,.v k,n+l, m "}" + V k,n, m -- vk,a_l, m --" .

I AZ (vi'i vI'i VI'i vl'i ) (5.38d)J¢"_ L" k,n+l,m-I-1 -- "k,.-1,m+! -- "k,.-Fl,m--1 "_" "k,n-l,r_-I

i v',' / 2A9' "7'I¢'Ay'_v,, , v,,,-- "k,.,m-t-1 + 2 -I- Rc.'-'_'_z2 + "_e ) "k,n,m - "k,,t,m -"

[ A 'N'" AV' (a,,,_l a',' 2£ ','-_ cz',' )7/: t/ =,. ,,,+ _ \-=,,.+,,. + 2 - -, , ''=k,t,,_ =Jk,w,_t,_ ""=k, w,--t_'r_,

+ AV: (vl,i_z g/,i
Re Az''---_ \" k,.+z,ra + k,n-l,m) (5.38e)

i w_,i (2 + "y2/:=A==)W l'i w t'_-- ""k,n+l,m + k,n,m -- ""k,n-l,m -"

I Az (flz,i _ n_,_ _ 7 k A== (Vt, i V_,_2 _ ,'.-+,.- ,,.--'.-/+ 2_----__ ',",'+_- _,",'-_) (5.3sf)

I _l,i
-- v_jL,m+ 1

3 A92 2 A92 2 72k_A9 _ A9 _ ) rat, i+ P" \-fff/ + R_P,._=,+_+ _P,. +'_-';"sT,,,. .._,.,.,
I _l,i-- vk,n,m_ 1 -"

Pr A!/= (40 _-_ 0 _-= '_ " ="_'_-_2 A_ k,n_,m -- k,n,m/ - Pr _11 l)k,n, mI
Pr A9 = - t,_-;

+ _t_STs,,_ Ok,n,m (5.38g)

I fo,

I k = (0,1,...,{) , n = (1,2,...,N - 1),
m = (1,2,...,M- 1), and l -- (2,3,...).

!
I
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I
AY2 (2 _z,i - 2 n _'i-t )The Vl, Poisson equation contains the additional term _ \ z_.... ._....

which is again added to speed convergence. I

5.3.2 Discretization of the Undisturbed Flow Boundary and Initial Conditions I

The boundary and initial conditions for the undisturbed flow that were

presented in Fourier space in Section 5.2.1 are now shown in discretized _otation. I

Again, the three--dimensional components are zero everywhere for I < LI. Thus

Equation (5.13) in discrete form is I

= flzo.... = Nyo....

and for k > 0: I
U_,.,., V/ l •= _,n,_ = W_,,,,m= 0

= n,. .... = n,. .... = o. (5.3_)

Initial Conditions: l = 0 and l = 1, 0 _<n <_N, 0 <_m <_M, k = 0 I
IIW

Inordertostartthecalc_ation,informationisneededatthefirsttwo
I

time levels. These first two time levels are set to the similarity solution. The I

discrete form of the initial conditions then follows from Equations (5.14): I

U° - U1 (5.40a)0,n,m 0,n,m = _SIM,,.m
ms,

E° V,1 (5.40b) IO,n,h. m O,n,m ---__SIM,,.,,_

a0o,,,,. 1 (5.40c) I= _'_zo,_,m -_" 02zSIM,,,,_

0 ° 01 = TSlM,,,,,, (5.40d)0 tTl_t11_ _" 0 tI_LtTPIL *

Inflow Boundary Conditions: n = O,0 <_m <_M, 2 < I _<L1, k = 0 I

The inflow boundary conditions follow simply from Equations (5.15): I
U' (5.41a) IO,O,m ---- "gSIMo,¢.

I
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| vo_,o,_=vS,Mo,. (5.41b)

| n_.o..=_,S,Mo.. (5.41c)
e t = TszM°.. (5.41d)O,O,m

I OutflowBoundaryConditions:r_= N, 1 < m < M - I,2 < I< Lx,k = 0

I At the outflow boundary, the discrete form of Equations (5.16b), (5.16c),
and (5.16d)is:

| v,,0,N+t,m- 2V01,N,,,+ V0/,N_t,,,--0 (5.42a)

i f/t 2 I f/t - 0 (5.425)
zo,x+,,,,. -- _'_z°._.,,,_ + zo,x-t,,,_

I 0/,N+I,.. - 20_,N,,. + 0/,N-l,m -- 0 (5.42c)
The discrete form of the boundary condition for the U velocity is found by using

I boundarycondition(5.16a)and theU Poissonequationappliedattheboundary:

0U t 0V t
I O-'_[O'N'm= -'-_ O,N,,,, (5.43a)

OaUlt = _ oag t (5.43b)
I 07 o,N,_ Ozohjo,N,,."

_U" *O,N,=I The derivative _ is discretized as follows:

_U t 6 UI _t= --- ( O,N,,,,-- o,N-t,.,)
I 0qZ2 0,N,m At2

I + _zz 2 + + O(Az:). (5.44)
0Z 0,N,m. OZ 0,N-l,m/

Introducing Equation (5.43a) into (5.44) leads to:

I 8aU i 6 Ul Ul
0,"=_ [0,N,m.--- '_3 (0,N,m -- 0,N-l,m.)

2 (20F'lt OVI I "| -_ _ _,o._,,.,,,+_" o,_-_,_/ (5.45)

I
I
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!
The derivative_ 0jv,m fromEquation(5.43b)isapproximatedby

!
0,N,.,- 2A_Ay - 0,_-1,.+x !

V'Z V'_ 1
- 0,N-x,m+x+ 0Jv-x,m-x + O(Az2,Ay 2) (5.46)

wheretheboundarycondition(5.42a)isintroduced.Standardcentraldifference I

#V '°,N,M Iapp_ximationsareusedfortheterm-_- .The boundaryconditionforthe

U velocitythusbecomes

UOl,i TTI, i I
,N,m "- "O,N-X,m

_" fv" v" v',_ _" )_547) |\ O,N,m+X-- O,N,m-X+ _,-X,m+X- "O,N-X,_-I

The additional grid points at 'N + I' are eliminated for the flow components I
of Equations (5.42) using the following procedure. For the outflow boundary

condition for the V velocity, Equation (5.42b) and the V Poisson equation (5.38e) I

axe applied at the right boundary along with Equation (5.42a). This leads to the

following boundary condition for the V velocity: I

• -- /J Iv t'i vl'i &!12ffl t'i - fl:o,._t,. ) (5.48)-.o,_,_+_ + 2V'o:'N,_.- a_"O,N,m--1 -- _ _"zo,N,m

For thespanwise vorticityattheoutflowboundary,conditions(5.42)and (5.47) I
axeusedalongwiththeapplicationofthespanwisevorticitytransportequation

(5.38c)attherightboundary.Thisleadstothefollowingboundarycondition: I

- fl_°'_"'+x + \ 2At + 2 + "_zuStM_,,..) --.o,_,,,,,f/_'i_ --_o,_,,.-tfll'i =

AJ"_24C]_o,_v,.- ft,om,.. + AY2 \--'ore,- + --.o,_r,,,, .o,_,,./2 At

AY2 -t,i-x {nz,i-x f_l,i-x
+ "_'_zUSrM_,,-l-l.o,_,,. -- \-'.o,_,,.+t + --.o,_v,.-t) . (5.49)

I
I
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I Fh_ally, the outflow boundary condition for the temperature is found using the

i conditions (5.42) and (5.47) and applying the energy equation (5.38g) a_ the right
boundary. This leads to the foLlowing form of the boundary condition for the

I temperature:

_t,i (3 Ay z 2 Ay 2 ) cat# At,iI - "0,_,.,+1 + Pr \ _-_ + _ + -_-_StM_,.. "0,N,.. -- V0,N,_-I =

1-2 A. 2Dl'i-1
2At

I Pr Ay 2
_t,i-_ (5.50)

I
The nonlinear terms in Equations (5.49) and (5.50) also require special considera-

I tion at the outflow boundary, go: the spatial derivatives in these terms, standard

second order central differences are used and the additional point at 'N + 1' is

I eliminated by applying boundary conditions (5.42).

i Outer Botmdar$ Conditions: m = M 1 1 <n < N - 17 2 < I < LI_ h = 0
For the outer boundary, conditions (5.17) in discrete form are

O,r,,M = 1 (5.51a)

I V'l -
O,n,M+I -- VoI,n,M_I -- O "_ O(A_/2 ) (5._1b)

=o (5.51c)

| o,O,a,M "- O. (5.51d)

I The V velocity at the grid point 'M + 1' of Equation (5.51b) is removed by again

I applying the discrete V Poisson equation (5.38e) at the upper boundary. Tb_is
leads to the following form of the outer boundary condition for the V velocity:

I (1+ AY2 )V',i v',' AY' (v"i-' V.'" _ (5.52)Re Az"----'-_ o,n,M -- "0,n,M-1 -- 2 Re Az 2 _'0,n+l,M + O,n-l,M) •

I
!
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Wall Boundaz 7 Conditions: m - 0r I _< n _<N, 2 < ! _/_ k = 0 I

At the wall, the bounda. 7 conditions of Equations (5.18) yield:

I
_0_,.,0--0 (S.53a)

V0',_,0= 0 (S.53_) |

an,' __v ' (5.53d)
(_Z O,a,O= O_2 O,n,O I

ez A(=_)=_ (s.5_)O_nt 0 -"

The spanwise wall vorticity boundary condition (5.53d) is discretized as follows I

for2<n< N:

_"" _(,' - ' _.o.._,)+o(_,,_(...)I= -- G=o,.,o 4N=o,,,_z,o + z
#z o,_,o 2 _z

and for n = 1: I

'°'I'1(,o,o-,:o.oo) +o(_.i (..-_II
=-- n z

0= o,l,o A=

8_V z°"_'° I
For the diJTerence approximation of _ , am interpolating polynomial that is

second order accurate is used. The boundary condition (5.53c) is introduced into

tMs polynomial approximation so that a one-sided difference approx3matiou with I
three nodal points results:

_V I I I
092 o._.o-2A92 (-?Vo_..,o't-SVot.,, -V,,ot,._.:.) "1"O(Ag'). (5.55)

However, V01,n,0= 0, so the difference approximation for the wall vorticity follows I

from Equations (5.54) and (5.55)

for n = 1: I

nz,, =_.ll _z ( V.'" VJ,'_ I=o,,,o =o,o,o 2_92 +8 0,I,1 - 0,*,2) (5.56a)

and for n >_.2:

!
I
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- 3rz'°''-_'° 3_,y2"'=o,..o o,,,,1 o,,_,2/. (5.565)

I Comer Point Boundary" Conditions: n = N_ rn = M, 2 < l < LI, k : 0

I The upper right hand comer point of the integration domain r _,_;'_
special consideration for the V velocity. At this nodal point, the outflow hour.' "L"

I condition (5.16b) and the outer boundary condition (5.175) are applied along ruth

the V Poisson equation (5.38e). For this comer point the boundary conditions are

I then

I U}o,,,v,M= 1 (5.57a)

Vl,i vl,i

I "O,N,M -- "O,N,M-1 -" 0 (5.57b)
nZ.o.,,.,,= 0 (5.57_

| o,o,N,M= O. (Smd)

I 5.3.3 Discretization of the Disturbed Flow Boundary and Initial Conditions

I The boundary and initial conditions for the disturbed flow that were
presented in Fourier space in Section 5.2.2 are now shown in discretized form.

I Initial Conditions: l = L 1 and l = L1 - 1, 0 < n < N, 0 < m _<M

Again, it is necessary to prescribe two time levels to start the calculation.

I The discrete form of the initial conditions at time I = L I and _ -_ LI -- 1 follow

from Equations (5.19):!
r._ rrr..-1 (5.58a)

I r,, vL*-* (5.58b)V6,n,m-- "O,n,.* "-_ST.,,.

(5.5Sc)

r., A",-* = TsT.,. • (5.58d)

I O0,n,m --- VO,n, m

I
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All other discrete components are identically zero at time l = Lx and I - LT. - i. I

Initial Conditions: l -- L_ and I - L 2 - 1, 0 < n _<N, 0 < m _<M I
For the active control simulations, the initial conditions at time I = L2

and l - L2 - 1 for the wall temperatures follow from Equations (5.20) I
for l - L2:

!
eL,_,.,0= e..(=.,_,) (5.Sga)

and for ! = L_ - 1: I

eL,-_ e,,,..(z,,,h At) (5.59b)

Inflow Boundary Conditions: n -- O, 0 _ ra < M, I > LI

At the inflow boundary, the discrete boundary conditions follow from I

Equations(5.21): I

uo',o,,,,= ,,s_Mo., (5.80a) |
V_*,o,.,= vSZMo,.. (5.60b)

n',o,o,.=,,.,,,.,o.. (s.oo,=) |
e _ = TsxMo,.. (&SOd)

O,O,m I

ALl other discrete Fourier components axe again identically zero.

OutflowBoundary Conditions:n = NB, 1 < m < M - I_[> L I m

The outflowboundary conditionsfollowfrom Equations(5.22)and in Idiscretizednotationaxe

for k = O: I

1 (Uo,Nm+ltm 2 o,Nm,m+ O,Ns-IAz 2

-- _Z 26(UST_t8 .,,, -- _$Tx m- t,..)

!
|
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I 1 (2 2 +VSTN. VSTNs_,..+_)- _z-a_ "ST,,.,.+,- ,,ST,,,,._, _,,.+,-

- (5.8ia)

_ __ _l_pN B ,

W,_,N.,. , = 0 (5.61c)

| n;o,..,..= o (5.8 a)

| n;o.....=o (5.6 o)

I 1 (ill - 2ill -t- fl.e.,. > - -a' fl' (5.61f)
zO.]_ B +l,m ZO,M B ,m -- 1,_ rN ZO,.WB ,,_

1 t

I and for k > O:

I _ _ Ul

I _ ([/k,Ns+l,m--2 UI,,Ns,m+ l,,Na-l,m)= --a,.,,2U_,,Iv8` ,., (5.61h_.
1 Vt V} V,l

--/_.2 ( k,NB+I, m' -2 k,NB,. "_" k,NB-l,m,)_-- --QPN'2 _,.N'.' ,m, (5.61i)

I W l l W l a2 W t
1

-- _ W;,.N,.,_+
AX 2 ( k,N.+l,m 2 k,/VB--I,.*)= -- .. _,N.,., (5.61j)

I 1 (, 2' ) 2 ,--Az_ f/'_,"l+*,"- fl'_,"m,"+ fl'h,.B-*,--= --a..fl.,,_.,,,.(5.61k)

1 (., 2 ' ) 2 l_z 2 y,,..+,,.- n_.,..,.+ flyh,..-,,.= -a.. n_,..,. (5.611)

I _'z"]'l(fl'''_" +u._ - 2 fl...,,.- "Ffl',.-,-..-): = -a_._" fl.,._,... (5.61m)

I 1 _ zAz2(eh,N,+1,,_--2®_,,N,,,_+ ®_,,N,,-i,_,= --a,._,_®_,,N,_,_.(5___,-_

i The index for the location of the moving boundary is repJ:esented here as 'NB'.
The additional grid points at 'M + 1' a_e eliminated from the above dif-

I ference approximations by applying the discrete set of Equations (5.38) at _.he
outflow boundary. Using the boundary conditions (5.61) and the discrete U Pois-

I son equation (5.38d), the following form of the discrete outflow condition for the

U velocity is found:

!
I
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fork =0: I

UO'Nn'm = U'Tsa'" 1

+ i [(I a_ AZ=_ [Vjj vz,i..... # 1 O,NI2a,5,_=_y L\ 2 / \ ,-,+1 - "0,Na,,_-*/

_ Vo,:]_/,1,re+l"• ._. V_:_ra_l,m_1. ] ._._(._ST.a,.+_VST.n,._t)y I

_[ o(_....__.....) _( 1a_. Az Zy 2VSTNa,.+L -- 2 _$TNa,.-z

+ vSr,_a-_..+,+ _Srwa-z..+,}] (5.62a) I

_nd for & > 0:

{[1( a2,2._z2) (vU vl,_ _ IUt,i 1 2_,Ns,-. = "_a2 -_-p/c2 A_Ay I \'k,N.,.,+_ -- "_,N_,.,-*)

v,,, v', 1 °,,} I- "*,N.-I,._+*+ *,Na-I,.,-*J--7k--Y',"a,- ,. (5.625)

For the V velocity, boundary conditions (5.61) and the discrete V Poisson I

equation (5.38e) applied at the outflow boundary lead to the following form of the

discrete boundary condition for the V velocity I
for k = O:

O,Ns,m+Z+ 2 -}- Re o,Ns,_ -- Vo,Ns,_-I

[( ) o:.:.' ] 1_ Ay2 _- _Iz2 nU _ o_,i + If.aT.s,.

' !+ a.. Ay 2 (5.63a)
Re _ST _rn '"_

and for k > O:

-- k,Ns,m+l nu 2 nu -_e ' " k,Nn,m -- k,Na,m-1

..'[( °:./.') J I= 7 kay =N=,,..,. + _ 1 nt,i z,: (5.63b)" l --Zk.NB, m -- _"_l_k,N_t,m •

For the W velocity, conditions (5.61) and the discrete W Poisson equation I

(5.38f) are used resulting in the foUowing outflow boundary condition

!
I
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I for k -0:

| "t+o,_',,.,,,.= o (5._a)

and for k > 0:

I ++,, _ [(-_+)(,,,__ ' _o,,)•"_,N.,.. = a2 .FT=k2 _ I 2 _l,,,_.,. _,,,.__,,.

7/= (Vu V,z,_ '_]m 2 Ay k, h,N,,,,,_+,- l,,N,,,,,.-t/ • (5.04b)

m Before proceeding with the outflow boundary conditions for the vortidty
and temperature, an addendum is first made to the additional quantities added

m to the nonlinear terms. These chmages are made at the outflow boundary and are

AI AI, i-1

m k,NB,m -- _'Lk,N n ,m

1 ( a).t+2 ) " ,t,i

m BIN.,m ._Li-1-= _" k,Ns ,m

(a_. 2 "y'+I¢2"_(N+t,i ill,,_ ' ,,..)-" AV: "-_-+/V "'.'x"'" -="_"m k++-+ -
t (+,, n',' n+,'-' n+,'-' )"I"_ f/x,,..,.+,. + - - (5.65b)"'Xk,NB,m-- 1 "'Xk,NS ,_.{.lt ''Xk,NB,m--I

I c_._=.., c _'_-' (5.65c): k,Nm,.*

D I Dr, i-'

m k,Nn ,m "- ""k,Nn ,m

1 a_, Az {Al'i Az'i-' ,m) (5.65d)+ _zz 1 2 USTtt.. kVk,N.,._ -- "-'h,Ns .

I for

l +:(o,1,...,_.),,+:+++,,
m = (1,2,...,M- 1), and Z= (Lt,...).

I
Introducingtheaboveaddendums intothediscretizedequations(5.36)and apply-

m tag the boundary conditions (5.61) yields the following discrete boundary condi-
tions for the vorticity mad temperature components

!
I
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for k = O: I

n',o.,,,.. ' I
= _l'o,xa,- = 0 (5.66a)

_ fl/J
"'zo,lr 8 ,m-- t

+L-_-_+ _ +2+_- I .- ._.,. __,..,._=
f_lJ

-- z0°NB'm'- t I

= _ N,_.,=...- z-=

+ A!/= \--_,x=,. + --=o._s,,,. -"-=o,xm,,,.

_ (I a_Az') u fl '''-I I+ _ STx,. =o,x.,.
2

-- \ zo,xa,,.+_ 4" =o,xa,,._z Re

-- vO'Na'm+l I

(3 _,y' 2 ¢x_ Ay' A1j' / (x_. _X=' / /_,, ,+ Pr \ 2 At + _ + Re Pr + -_= I 2 UST_.. VO,N_,,,_

-- Ol'i IO,Nu,m-1 =

PrZ_Y2( 4 0,NB,m--00,NB,m) -Pr Y O,NB,m
ez-1 t-2 A- 2D_,i-1

2At I

Pr Ay' ( a_ A=') A,,,_1 a_. Ay'TsT..," (5.66c)+ Az 1 2 uSZ_,. VO,Na,., + R_

and for/c > O: I

-- Nl'i IZk,_" B ,m-- 1

[3 At/= : = a_. z: f/,,,

+ L2 At + Re + 2 + Re + A'-'_ ' I
_ Nl, i

=k,JCB,,_- l

__(, ) I=y-_ _:7,_._,.- n:_,_..,.
l,i-1 ('_l,i-1 Al,i-1

+��`�(_""") I--Zk,NB,m "-:=k,NB,m

+ _ 1 "2- t=ST_,,.--=,,,,_,. - \"=',_m,-+_ + _'_-_

I
I
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I _ n!,i

[ 3 Ay2 2 2 a2,. =2
+ L-_7"+ Re + 2 + Re + -_z 1 t=sr... Yh,_B,---*

_ (1!,i
Yk,X B ,m-- 1

1,i--1
,- C l'i-1 Ay_,_rs,,,, )

I +_-_= 1 2 ST,.,,, Y_._m.- -- \ _._m.-+_ + Yk._a.--

_ NIJ

I __Zk,NI,m_ I ]o,,,+ L2A= + ._c + Re + _ 1 2 uSr_r,. -'=_,_8,,--t

I _ i'll, iZa.,.N'B,m-- t

AY2(4 1-1 f_=k,:,_,,.,)
I - _-_ fi='.'B.-- l-=

(Rl,i-1 _l,i-1 _ Az,,s.,.)+ At/= \--=_,",,," + --=_,".,- l,i-*

_Y'/ (z_" Az') u _,,,-1 (n,,,-* fl 1''-1 .._,) (5.66f)I + _ 1 _ ST.,. =,.,.,,,..- _ ,,,.,,.,, +--.,,_.

I _tl, i
-- "" k,NB ,m+l

I + Pr \ 2At + _ + Re P," + -_e + _z 1 - usr,,,. _,N,,..

_tl,/
--Vk,N,u,m_ 1 -"

I Pr _V 2 (4®l-, Or-= _ - =..U-*
2 At \ _,N.,,. _,N.,,.) Pr-- -- Lly LYk,Na ,m

+ 1 "" ...Ij-z (5.66g)AZ 2 UST_,._m/,,N. ,m"

I ,__ forthe undisturbedflowoutflowboundary conditions,the nonlinearterms
in Equations(5.66)are discretizedusingsecond ordercentraldifferences.The

I additional point at 'N + I' is eliminated through the application of boundary

conditions (5.61).

I
I
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Outer Bounda., 7 Conditions: m = M, I _<n _<N - 1, L1 < ! I

The discrete boundary conditions for the outer boundary are derived I
from Equations (5.23)

for k = 0: I

2/,'--; _ (Vo',,,,,-,sT.,.) (5.67=) |
n'o...,,= 0 (5.67b)

n;o...,=o (_.67o) |
n_..., =o (5.67d)
0' 0 (5.67e) IO,n,M = )

and for k > O: I

-- ' v,' _/a2"=+ k2"r__' (5.670I (vL,,,u+_- _,,,,M-,)=- k,,,,u
2 A9 Re

nL.....=o (5.o:s) |

n;,...,=o (5.67),) |
n*,,...,= o (5.o7i)

e I 0. (5.67j) Ik#t,M --

The grid point at 'M+I' in Equation (5.67a) and (5.67f) is eliminated by applying I
the discrete Equations (5.38d), (5.38e), and (5.38f) for the three velocities. The

following three equations result for the velocities I
fork = O:

TTl,i rTl,i rTl,i I- '-'o,,_+z,M+ 2 VO,n, M -- UO,n_l, M -"

) Ia,.. (vL'-* V_,' (5.68a)
._¢ _,'0,n+l.M- "0.n-l.M --'VST,=+t,,)ur + VST,,-t.-u '

( a,' AVe..) t,,', v',' I1 + ReA:''"_ + _ "o,,_,M -- "o,,_,M-I =

A92 (V/'i-1 v z'i '_ A9 a'u (5.68b)
2 Re Az 2 \ o,.+1,M + "o,.,-z,M) + VST..,_ I

I
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i w,,o,.,M= o, (5.6_)

I and for k > O:

i rr',i (2 7"_'a=')rr',' rr',i
-- va,,n+l,M + -I- v/,,n,M -- '_,n-l_ --

A: v/an,.,,+ 7:t" (v,,i-_ v_,_2 Re \" _,.+I,M - "k,.-t,_/ (5.68d)!
1 + 72k=AY2 Ay= ,'u

2 Re + Re Az"-''-_ + Ay "Re k,n,M -- "_,n,M-1 :

i Ay2 (v,,i-* v,,i2 Re Az 2 \" _,n+l,M + "k,n-t,M) (5.68e)

w,,i (2 + 7_t2A=2)w,,i v/,i" -- "" h,n+l,M "]" -- --"" h,n,M "" h,n--l,M --

I _Ja2 "J""Y2_2
- 7 k Az 2 "_ v ''i (5.68f)

.Re " i*,n,M

I Wall Boundary Conditions: m : 0,1 _<n _<N, l> Lx
At thewall,thediscreteboundary conditionsforthedisturbedflowfollow

I Equations(5.28)
from

for k = O:

I
U} - 0 (5.69a)O,n,O

am

I Vo'.,.= V,_o(z.,t, ) (5.69b)

| w,,o,n,o = 0 (5.69c)

a_o,..o = 0 (5.69d)

i f/_o...o = 0 (5.69e)

ON: z = _____eVoV1 2I O: o,.,o o,.,o
(5.69f)

oz _(=,,)=_+e,,,o(_,,,_,) (5.69s)
i O,n)O _ )

I
|
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and for k > O: I

U_',.,o= 0 (5.emh) |

v_,.,ov.,(=_,t,) (5.6_)

W' 0 (5.69j) Ik,_s,O

@=_°]l _Ny _ -yk = l

_2L2,-,,1 0 0ZOp h,,.=,0Re vl'V[j',',° (5.69k) I

n;.,.,° (.s.69D |
0_'' --7 k f/L,. ,.,o - R--._V_ V Ilk,n,o (5.e9m)-_-_ k,.,O

e'_,,,,,o= e.,(=,,,h) (5.egn) I

The boundary conditions (5.69f), (5.69k), and (5.69m) for the strea_nwise and I
spanwise wall vortlcity are discretlzed as follows

for l<n<N: I

' - ' n'=,,.,o) + o(A=')(5.70,0_n= I 1 (_=_,,,,+t,o 2 £=,.,,,,04-
a== s,,,,,o= _ I

=_ --- + O(Az'). (5.70b)
(_;C(_'_ k,n,,0 2 A,I_ h,.'l'1,0 (_tJ k,n,--1,0

At thegridpoint'n= NB', theoutflowboundary conditions(5.61d)and (5.61k)

are introduced: I

f_=_sm o (5.71a)
_Z2 k,Ns,0 ' '

,,,. ( ) t_n= I I a,.. Of/, I l

a=-_' ,o = A'-'_ 1-- 2 \ o'hj ,,r,,Na,1- "_-" -I,,

+ O(Az'). (5.71b)

!
The derivative _ kt,.,o(39 is discretized using a one-sided forward difference:

_)f/yI = 1 (-3f/y.,..ol+ 4ftI - n I ) + 0(A92). (5.72) I@9 ,v,,.,o 2 Ay Ya,*._ _",",= I
I
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For the discrete form of 2V/,V_,n,0, the following dif[erence formula is used

I for k = 0 and k- I:

I 2 i a=%vL.,,o= _-2(v.,(:,,,_,))

1 Y,' V,_,n,2) 7'k2 Y,' (5.73a)

| +2-'_'y_(-TvL,',°+8",",*- R, ,,,,,,o
and for k > 1:

! ,2 _ 1 V,l - V_,,,,,2) (5.73b)v_v_,.,o=_ (-TVL,o+8 _,.,1

I In the above two equations, the same one-sided difference formula for _. l,,,,,0
that was used for the undisturbed flow (Equation (6.55)) is employed here. For

i k > I, the wall V_ velocity is zero, i.e.,

I V_,,_,o = 0 for k > 1.

I The analytical derivative of the function iv, is used in the above equation for the

I z derivative 82Vtaz2h,n,o" The term afl,t0z h,n,o is discretized as in Equation (5.54)
for the undisturbed flow. Therefore, with the help of Equations (5.68) through

I (5.73), the wall boundary conditions for the spanwise and streamwise vorticities
are

I for k:O:

| n'.o,.,o=o (5.74a)

i for n = I:

ni,i =l.ll _ _: [ 1 (92•o.,.o ,o.o.o _ o=_(V.o(_,,_,))

i (-Tv,',' v',' -v'.'_l| +_ o,1,o+8 o,_,_ o,_,_/j (5.74b)

I and for 2 < n _< N:

I
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C/Z,i = 4n_,._ t,o_ 1C_,_,._,,° 2Az[I _ I
+ _ .o,,,,_- .o,,,,2/, (.,i.'r4c) I

for k= 1:

for 1 <7, < N-I: I

- fl t'i + (2 4- 7iAz 2) flz'i - Nt'i I"'_l,l,$.t,0 "'SI,_,0 ''_t,m-- 1,0 ""

4"_-YA:(4 n l,i - S'Zu - 4 n z'i + nl'i _ I
"'Yt,= ��h�¥i,s��\�h�_/1,=-i.i Yi,m- t,z /

_.y,_2[ za.oz_o2 (v.,(_,.h))

1 (7Vii,,,,o 8vt,i V,,,_ 7'v, ] I"11"_ -- "1,.,I "l" I,n,2) -- "_"_ee"l,n,OJ , (5.74d)

and for n = N: I

fli,' _ I [ 1 82 I.,.,,.o _=,_¥,y_ _,_ (V.,(:N,.,,))

I [( c,_,,Az2)( z,i _flz,_ I+ _z 1 2 4Nn,.,.,, -"*,"s,'

-4n i'i n i,i >] (5.74e)_t,NB..i, t "4"--_t,NB_i, 2 t I
for n = 1: I

l-il,i l [1 _•,,,,o= a,,,o,o-_= _eo="(v.,(_,,tt)) Ii,

1 (-7 V i'i 8 V i'i V i'i+ _ i,l,,+ l,i,i- i,l,i/

+ ] I- - "_'_ (5.T40_-'_e1"1,1,o+ 7",,,,_.o

and for 2 <_n __.N: I

I
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1 1,_,21+_ (+_v::'.,- v.'.'

I +_, ,,,] ,,,4,>_ee t,Na,o + 7 f_=t,xa,o ,

I fork> 1:

I for 1 <n <N-l:

i l'll,i -- f_l,i

- n _'i + (2 + 7_2A= :) --..,.,o --..,._,,o='Zk.m+t,0

Az (4 fl_,.+t,o -- fl _'i -- 4 fl,,i + fli,i_,i Yk.tt+t.Z -- Itkit.- t.t Yk,tt-t.2]

I and for n = N:

-- 'rrl,i l,i

"'"0 a_,,+-rlk 1 _ i'k'N_'l

i j,o,,-o,,--Yl,2br B ,l --yk,N B ,i

I -'°'" +°"' )] <_"," "yk.N B - t.t " "_lk.$f B - t.2

I for n = 1:

I "-s_,t,o = f]:_,o,o- Az -7. i,l,0 + 8 . 14,1 _,1,2] i

72k 2 _ kfli,i ]
Re Vl,,1,o+ 7 =.,,.oJ ' (5.74j)

I and for 2 < n < N:

I .':.0=.L,:._,o-_..,._,._ 2.v,
7:k: V_' + 7/* fl_'_,..,o ] (5.74k)I - /_"'Vk,N.,0 •

I
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Corner Point Bounclsxy Conditions: n = N I m = M I i > L i I

The upper risht hand corner point of the integration domain requires I

special treatment for the three velocity components. At this grid point, the outflow

boundary conditions (5.61) tosether with the U, V, and W Poisson equations I

(5.38d_ 5.38e, and 5.38f) are applied. The boundary conditions are then

for k =0: I

_,o,,, , °,.[(<A:) I
,,'.' ..T,,.,.):_,,,, _.)] (_.,_,,II"O,Na,M -- -- _. O,Na-I,M -- 'VSTw 8 I

( ,_A: +,, o,..,_v.',' v,,, II -I- 2Re V/-_) O,NII,M -- "O,Ns,M-I =

a2 A-2\
[', a,.u ,._N_.._.__ (5.75b)

' IW;,Ns,M --" O (S.7_¢)

.:o,..,.:o I
r_o,,..,,,=0 (S.TSe)

O,o,..,.--o(5.,o,,I
I

and for k > O:

u,, i _°_. �%L'¤�|�I_,N,,M=-:,,(,_,,+-:k_) R_

[(1 "srN':",) T:,'' _v',' 1 I• t,,N, ,M "h,N, -1,MJ (5.75h)

I + 2 Re + AYV vt'i = vt'i (5.75i)• h,Ns ,M "h,Na ,M-I

R, |

I
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W_,_ 7k _a_,,r + 72k_yz,_ (5.75j)

= o (s.Tsk)

| (5.750fly_,xm,x -" 0

| = o (5.TSm)
e_,N,,_ = 0 (S.TSn)

I This completes the discretization of the governing equations and bound-

I ary conditions in Fourier space. In the next section, a description of the solution
procedure for these equations is given.

I 5.3.4 qolution of the Tridiagonal Systems

I In presenting the discretized equations and boundary conditions, the it-
eration index 'i' was introduced. This iteration index is dependent on the solution

I procedure, i.e., the line iteration first sweeps :n the z direction and then in the

y direction. In addition, the order in which each equation system is solved also

I determines whether the terms are computed at the current iteration level or the

i previous iteration level.The tridiagonal reduction scheme is an adaptation of Gaussian elimi-

nation and is commonly known as the Thomas algorithm (1949). This Thomas
algorithm is modified so that the tridiagonal system for the _z_ and Vh equations

are coupled together through the n._ wall boundary condition. The coupling of

these two equations speeds the overall convergence of the method. The specifics

I of this tr_diagonal reduction scheme can be found in Fasel (1974).

i The first step in the numerical procedure is the calculation of the undis-
turbed flow field using the boundary conditions presented in Section 5.3.2. After

the stea_iy state solution is found, the boundary conditions are changed to those

I
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described in Section 5.3.3 and the disturbed flow is then calculated. The iteration

begins first with the calculation of the 0th mode equations and then proceeds to I

the 1st mode equations. The procedure continues for aU _ + 1 modes. For the 0th

mode, only four equations need to be solved since the 0th mode is two-dimensional I

(Wo -- fl-o = fl_o = 0). For the other Fourier mode equations, seven equations

must be solved. In addition, the viscosity for each mode must be calculated. I

The line iteration in the z direction begins with the solution of the I
streamwise and normal vortidty. The streamwise vorticity at the wall requires

special consideration. The boundary condition (5.74) for --*_...0fll'iforms a tridi- I

agonnl system in z instead of the ?/direction that is necessary for the z sweep.

Therefore, the stresmwise wall vorticity is c,dculated during the !/sweep and the I

values of the streamwise vorticity at the wall needed in the z Lineiteration are

taken at the previous iteration level. After the f/s. and fl_. equations have been I

reduced, the V_ velocity and spanwise vorticity equations are solved. As already I
mentioned, these two equations are coupled through the wall boundary condition

for the spanwise vorticity and _re solved for using a modified tridiagonal solver. I

Finally, during the iine iteration in the z direction, the temperature field is cal-

culated. The Ui, velocity and Wj, velocity equations are solved next with the line I

iteration now proceeding in the I/direction. Finally, the wall streamwise vorticity

is reduced. I

Once all mode equations have been solved, the solution is checked for I
convergence. The following convergence criteria is used:

I ,'i fl"i-11 < e (5.76) II"_Z&,a, 0 _ ..,ll:k,m, 0

for |

(0,I, .=I0,I,2, l

I
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where e is an input parameter. The difference of the spanwise vorticity between

I successive iterations was chosen _ter a convergence study of the other flow vs.-i.

ables was made. The absolute difference between successive iterations was checked

I over the entire domain for each variable. It was found that the spanwise vorticity

I at the wall had the slowest rate of convergence. In view of the storage requirements
and calcul&tion costs, only the wall spanwise vorticity is monitored. Convergence

I criterion are generally based on the residual of the difference ewaations. However,

due to the implicit nature of the numerical procedure, the residual is not easily

I available and requires several calculations to obtain. The residual was monitored

i in a two--dimensional simulation, _ud found to possess the same convergence be-
havior as the absolute error. In addition, the residv'_l of the spanwise vorticity at

I the wal/converged slowest.

The convergence rate of the method is increased through the following

I _wo additions to the aJgozitbm. First, it was found that underreIuing the wall

spanwise vorticity significantly increases the convergence rate. Thus, aiter fl.l,i

I "",Ik,,,m,,0is calculated born the coupled tridiagonal reduction scheme, it is underrelaxed

I with the following formula:

l N t'i w,.(I"t'i + (I ,,-,:,i-I (5.77)
•"= -- We) _Lz_..., 0"'Zk,,s,O _'gk,s,O

i where _ is the relaxation parameter. A vaiue of uJ_ = 0.9 was found to give the
largest improvement in convergence for the numerical simulations in this work.

i _n addition to underrelaxing the wall spanwise vorticity, Richardson ex-
trapolation is used at each new time level to produce a better estimate of the fi_t

I iteration. The following formula is used:

I ,I,z'° 3@l-_ 3 l-_ t-_ O(Ats) (_.78)k,Tt,m -- k,n,m -- _ k,n,m + _ h,n,m "_"

I
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for

I
,n = (0,1,2,...,M), and I = (2,3,...). i

where _ represents all of the flow variables in Fourier space. The use of this i
I

extrapolation also significantly improved the overall convergence rate.

5.3.5 Evaluation of the Noulinear Terms I

The nonlinear terms A, B, C, and D in the difference _.luatious must

be evaluated at every iteration step, since these terms are treated implicitly. The

evaluation of these terms requires several computer operations due to the spectral i
i

expansions. For example, the nonlinear term u-_z in the z vorticity transport i

equation is a quadratic product of two spectral expansions, that is: g

$
Uh,,_,r_e az •

\ ffi- \hffi-Although the above expansion is straightforward to compute, the computational i
i

cost is considerable even for relatively small values of K. m
An alternative to the direct computation of each nonlinear te_ in Fourier

space is the pseudospectral method or collocation method developed by Gottlieb i

and Orszag (1977). The idea is to apply fast Fourier transforms to transform

between Fourier space and physical space in an ei_cient manner. Thus the flow i

variables are transformed from Fourier space to physical space and then the non-
i

linear texms axe computed in physical space. These nonlinear terms are then i

transformed back to Fourier space. Although the pseudospectral method appears

to involve more work, it is considerably more emcient when K is moderately laxge, I

_.bout K : 8 or greater. •
$
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For the numerics/simu/ations reported in this work, however, a value of

l K - 2 is used. Therefore, the numerical method is presently a purely spectral

method without collocation. The maximum number of modes in the nonlinear

l terms that can be presently evs/uated is K - 4. This choice was made because it

l was decided that computations/lim/tations wou/d prohibit numerics/simu]ations
with more modes.

I
5.3.6 Viscosity Cs/cu/ation

l The viscosity variation with temperature that is used in this work was
introduced in Chapter 3 by Equations (3.76). This empirical relationship allows

l for the calculation of the viscosity for a given temperature. The variable viscosity

terms are present in the nonlinear terms B and C. In the nonJJnear C terms,

l the first and second derivatives of viscosity with respect to the spatial _mensions

l are required. One could use the chain rule of c_fferentiation which leads to the
fol]owin 8 equations:

| a_ = __a_'aT (5.79,,)8= aT az

ay a_a_
a_ a_ aT

1 a_ - _ a-7 (5.79_)
1

8=, 8=/= [ST'_ 2 a/.=0=T

_'=,=_'_, )_'= +_'j= (s.79a)

a_ a2_o_raT O_ a_T (_._9_)

i 8=1= 8=/_ 8"/' 8T 8# _T (5.79h)_z_)z - 87'= _z 8z + OT _zOz

I
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_a----_= aT, 0_ az + aT0_az" (5.7_) II
I

Therefore, only the spatial derivatives of the temperature axe needed and the fir_

and second deriwtives _ and _- could be easily calculated by differentiating i
g

Equations (3.76) with respect to temperature. However, this procedure would

create some cubic nonlinearities and would Le more computationally involved. On I

this basis, it wu decided to differentiate the viscosity directly without the above

chain rule employed. This choice does not necessitate the storage of another large I

array. Only three grid lines (N - I, N, and N + 1) are necessary to hold the II
viscosity information. This is due to the line iteratior procedure. •

The empirical relationship (5.76) combined with the spanwise spectral I

ansatz presents a problem for the direct calculation of the viscosity in Fourier

space. This is due to the nonlinear nature of Equations (5.76). To calculate the I

viscosity modes, the following procedure was developed to avoid this di_culty.

First the ;emperature is transformed from Fourier space to physical space where I

the viscosity can be easily computed. After the viscosity is computed in physical

space, it is transformed back to Fourier space. The following three steps are I

required: I

Step 1.) _,l,i iaver_ traa,form Y(z, _l, zk, t) (5.80a)v/etn.l_1 _ _-'_

t)_q""_-_(_"') t) (5.8ob) |Step 2.) T(z,y,z_, #(z,9, zk,

Step 3.) _k,n,ml'i forwLrd_ttsnsform J_k,n,m'_l,i (5.80C) I

In this procedure, collocation points are reqmred and the method is analogous to I

the collocation procedure of Gottileb and Orszag (1977). A fast Fourier transform I

could be used in Equations (5.80a) and (5.80c), but since the method is pro-

grammed for/( -- 4 only, this calculation is programmed directly. The calculation

of xA_'i is programmed for a maximum number of 4 modes. •
I

I
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One further note on the calculation of the spatial derivatives of the viscos-

I ity is made. In the interior of the domain, standard second order central difference

approximations are used. At the outflow boundary, the same boundary conditions

I applied to the temperature are used for the viscosity, i.e.,

I for the undisturbed flow:

02_0

I _z 2 (ZN, g,t) = 0 (5.gla)
and for the disturbed flow

I 02"A"ik -" --_,H,.A_k(ZNa, y, t). (5.81b)8,'

I 5.4 Consistenc?_ Stability I and Convergence

I The conditions that must be satisfied for a solution of the finite difference
equations to be a reasonably accurate approximation to the governing equations

I is discussed here. One concern is the convergence of the approximating difference

equations to the exact mathematical solution as the spatial and temporal mesh is

I refined. A second concern is unbounded growth of any errors associated with the

I solution of the finite difference equations.
Lax's equivalence theorem (Smith (1978)) states that if a linear _nite

I di/[erence equation is consistent with a well posed linear initial value problem,
stability is a necessary and su/_cient condition for convergence. Mathematical

I proofs of stability and convergence for nonlinear problems such as the one posed

here have not been accomplished. Although Lax's equivalence theorem does not

I apply directly to the nonlinear problem under investigati'on, this theorem often

I provides a good indication of the convergence of the numerical method.
The difference equations are consistent with the partial differential equa-

l tions if the local truncation error approaches zero as the spatial and temporal step

!
[- , !
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sizes approach zero. The time discretization employed is second order accurate.

Within the spatial computational domain, central difference approximations have I

been used that have second order spatial accuracy for all equations. Also, at the

boundaries care has been taken to preserve second order spatial accuracy. How- I

ever, the wall boundary condition for the spanwise vorticity at 'n = 1' (or the I
inflow boundary) is only first order accurate in =. The gradients in the z direction

at this location are small and the first order discretization at this one grid point I
should not reduce the overall second order accuracy of the method. Thus it follows

that I

(5.11c- 5.11i) = (5.36a- 5.36g) + O(Az',AZ/2, Az_). (5.82) I

By consideration of Equations (5.5), the finite Fourier series (5.11c-5.11i) con-

verges to the governing equations presented in Chapter 3 as K _ co (or Az --, 0).

Therefore, the numerical method presented in this chapter is consistent to second I

order in time and in the streamwise and normal directions with spectral accuracy

in the spanwise direction. I

A complete analysis of the stability of the finite difference system pre-

sented in Section 5.3 is an enormous task. The usual yon Neumann method ex- •

presses the error terms in a Fourier series and then considers the growth of these Ig
terms. Nonlinear difference equations must first be Linearized and the stability

analysis is then applied. This leads to a necessary condition for stability. In the I

matrix method of stability analysis, boundary conditions are taken into account m

and a sufficient condition is generally found. However, the matrix method applied I

to nonlinear equations is inconsistent due to the necessary linearization procedure |
which then leads to a necessary condition only. Thus the yon Yeumann method

of stability analysis should be applied to nonlinear partial differential equations.

!
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However, the boundary conditions, including the time varying wall boundary con-

I dltions, would not be included in this analysis. Due to the enormous complexity

of such a stability analysis for the discretized equations in this work, a complete

I analysis of stability is not feasible. Fortunately, implicit methods are generally

I much more stable than explicit methods, and for the simulation runs presented in
this work, numerical stability was not a problem.

I
I
I
I
!
I
I
I
i
!
I
!
I
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CHAPTER 6 I

RESULTS I

!
The large number of flow parameters and the magnitude of the numerical

computation of the Navier-Stokes and energy equations prohibits an exhaustive I

search of the parameter space. The parameters used in the numerical simulations
EE

are chosen so that comparison can he made with existing experimental or an_ I

lyrical results, when available. The numerical method presented in Chapter 5 is

first tested extensively with calculations of two- and three-dimensional waves with

very small amplitudes. The control of these linear amplitude waves is examined I

with either passive or active heating applied. Detailed comparison with theory

and experiments is made to provide a thorough check of the numerical method. I

After the control of linear amplitudes is discussed, the influence of heating on

the nonlinear secondary instability process is presented. Numerical simulations of

active or passive control applied to the early nonlinear stages are shown. These I

simulations model the laboratory experiments of Klebanoff, Tidstrom, and Sar-
ii,

gent (1962) for the fundamental breakdown and the laboratory experiments of I

Kachanov and Levchenko (1984) for the subharmonic breakdown. The effect of

control on these two breakdown processes is investigated.

6.1 Passive Control of Linear Disturbances I

The pars_neters chosen for the simulation of passive control ot ._n _r dis- I
I

turbances closely model the e_ueriments of Strazisar, Reshotko, and Prahl (1977)

and Reshotko (1978). Although only control of two-dimensional I
and Strazisar

waves was considered in these experiments, tke control of three-dimensional oblique ..

|

!
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waves in addition to the two-dimensional To]imlen-Scldlchting wave is also inves-

I tigated.

In the physical experiments, the fluid is water and this fluid is used for all

I the control investisations reported here. The fr_stream tempersture _ in the

I experimental investisations is 75°F (or 23.89°C). For water at this temperature,
the dynamic viscosity _m is 9.135 x 10 -4 kg/m.8 and the Prandtl number Pr is 6.3.

I A Reynoldsnumber Re of I × l0 s is used with a freestream velocity Uoo of 3 m/J

and a reference length _ of 0.0353 m. In the experimental investigations, a wide

I range of forcing frequencies was considered, but it would be too computationally

I intensive to perform simulations with many frequencies and different levels of
passive' control. Therefore, in this work, control at two different frequencies (F -

I 1 and F -- 1.55) is investisated. The frequency F - 1.55 is chosen so that

the influence of nonparallel e_ects can be examined. Strazisar, Reshotko, and

I Prald (1977) found that nonparallel effects had a significant effect on the heated

boundary layer. For each of these frequencies, the following parameters are used

I for F = 1 (,8 -- I0):

I Re6,(at zo) = 500

I a_.u = 28.8

a,.,, = 27.8

I 7=20

I K=2

Az = 7.4800x 10-s

I Ay = 3.1623 x 10 -1

E _t = 1.0472 × I0'-2

!
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and for F = 1.55 (fl = 15.5):

Re6,(at zo) = 475 I

u,._ = 41.3 I

a,. x = 40.3

.7=20 I

K=2 I

Az = 5.1083 × 10-3

A F = 3.0042 x 10-1 I

A_ = 6.7561 x 10-_ . I

The same spanwise w_venumber _ is chosen for both frequencies. For F = 1, the I
oblique waves are about 35 ° with respec,t to the z axis and for F = 1.55, the

obllque angle is approximately 26° with respect to _he z axis. The stel: size in I

the streamwise direction Az is chosen so that there are approximately 30 grid

points per disturbance wavelength. The normal step size A_/is determined so I

that the y direction spans ten boundary layer displacement thicknesses at the in-

flow boundary and approximtely five boundary layer displ_ement thicknesses at I

the outflow boundary. The grid has 51 nodal points in the normal direction and I
481 points in the streamwlse direction. Therefore, the solution domain contains

approximately 16 disturbance wavelengths. The outflow boundary is initially po. I

sitioned about six wavelengths downstream (zs_ = 180) of the inflow boundary

and is propagated at a speed Vs = 0.6. The time increment At is chosen so that I

there are 60 time steps per period. The computations proceed for nine disturbance

periods for the frequency F = 1 a_ad 11 disturbance periods for F = 1.55. The I

convergence criteria used for all investigations is e = 1 x 10 -6. The extent of the I

!
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computational domain in relation to linear stability theory is shown in Figure 6.1

I for both frequencies. The stability diagram in Figure 6.1a is from the experimen-

i tal work of Strazisar, Reshotko, and Prahl (1977) and the stability diagram of
Figure 6.1b is from the linear stability theory of Lowell (1974). The stabilizing

I influence of uniform passive heating can be observed in both stability diagrams
where different levels of wall heating have been imposed. However, differences do

I exist between the two diagrams and these differences are discussed in conjunction

with the numerical simulations of uniform passive control presented in this work.

I For the passive control simulations of linear disturbances, the perturba-

i tions are input with periodic heating at the wall. The wall boundary conditions
follow from Equations (5.30) and (5.69):

I for the undisturbed flow:

| e'0,.,0= + (6.1a)
and for the disturbed flow:

| e'o,,,o = Aoz_ + sin'(_,_) [1 + ,(t)eeo sin(fl_,)] (6.15)

1,n,O

I Ot = r(t)eo, sin'(_,_) sin(fit,) (6.1c)
where

ZHEt --_HBx

ZHB_ <_z. <_ZSE_ •

I The heater strip is located one disturbance wavelength downstream of the left

I boundary (zHs_ = 30 and zHg, = 45) and covers about one half of a ToUmien-
Schlichting wavelength. The location of the heater strip is shown in Figure 6.1a.

I The details of the width and streamwise shape function chosen are discussed in

I
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Section 6.2.1. For the ramp function r(_), the ramp parameters RA -- 0.I and

_rr --- 1/2 disturbance period are used. These ramp parameters remain the same I

throughout all control investigations. The disturbance amplitudes eeo and _ez are a

chosen so that the temperature perturbations create linear disturbance velocities I

of approximately 0.05% of the maximum of the U disturbance velocity for both U0

and UI. Also they are chosen so that the temperature input from the heater strip

represents heating only and no cooling. This is seen by the addition of the steady I

state component sin2(_n) to the oscillating component r(t)ee0 sln2(_n)sin(/_ tl) in

Equation (6.1b). The temperature perturbation amplitudes are eeo = 2/3 and I

eel -- 2/3. This amplitude input represents a temperature input of 2°C above

the freestream temperature for the osci]/atory component with the temperature U

nondimensionalized by 3°C. The steady state component over the heater strip Iu
thus has a 3°C increase above the freestream temperature.

empirical relationship used for the viscosity variation with temper- I
The

ature was given in Chapter 3 by Equation (3.76). The viscosity as a function of m

temperature is plotted in Figure 6.2 and shows the decrease in the viscosity of

water with increasing temperature. In Figures 6.3 and 6.4, the first and second m

derivatives of the empirical function are shown. The first derivative is negative

and the second derivative is positive. I

6.1.1 Uncontrolled Linear Disturbances Im

Before presenting the results of the passive control simulations, the cal-

cnlation of linear disturbance waves without control applied is shown first. The I

uncontrolled flow simulations form a basis for comparison with the controlled flow

simulations. In addition, comparison with linear stability theory and divergence [[

checks on the numerical solution are made, providing verification of the code. •

!
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First, the results for the simulations with the nondimensional frequency

F - 1 are presented. The converged undisturbed fiow field for this frequency is

i shown in Figure 6.5. As previously mentioned, a steady state heating component
has been added over the heater strip and this steady state component is seen in the

l temperature field of Figure 6.5d. The temperature gradients are localized around
the heat sour_,e and die out quickly downstream and away from the wall where

I the temperature returns to the freestream temperature. The localized effect of the

heater strip can also be observed in Figures 6.5b and 6.5c for the normal velocity

I and spanwise vorticity, but the effect of the heater strip is not observable in Figure

I 6.5a for the streamwise velocity. The influence of this nonfiuctuating heat input
is very small even one half a wavelength downstream of the heater strip.

The base flow solution is very dose to the Blasius similarity solution
althoush the full Navier-Stokes equations are used. In Figure 6.6, the growth of

I the boundary layer displacement thickness predicted by the Navier-Stokes and

Blasius solutions is compared and the two are almost indistin_mishable. In Figure

I 6.7, a comparison between the Navier-Stokes and Blasius solutions for the skin

I friction coei_cient is made. The skin friction coe_cient is defined by

2 2 (_sr_

l cl = = - (6.2)p=u®

where 7_'=0 represents the wall shear stress. Again the two computed solutions are

I in complete agreement, except at the location of the heater strip which has caused

I local changes in the streamwise velocity gradient at the wall. This is expected,
since the steady state vorticity shows an increase over the heater strip (Figure

| 6.5c).
The computation conserves mass approximately. Figure 6.8a displays the

I velocity divergence of the base flow. The largest value of the divergence occurs

I
I
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I
over the heater strip at the wall. This i_ due to the large gradients in the flow that

are present in this region. However, when the heater strip is not included in the I
W

steady state computation, the velocity divergence i_. as shown in Figure 6.8b. The

largest
now occurs at the inflow boundary and is on the order of 10-4. 1divergence

The di/]_erences between the Blasius similarity solution that is used at the inflow
I1

boundary and the Nav;er-Stokes solution cause the small divergence at the left 1
boundary. The boundary condition_ are effective in conserving mass at the outer I

boundary and the outflow boundary. The maximum principle (3.75) is satisfied I

since the largest divergence occurs at the boundaries. 1
The Fourier modes resulting from gLe time period/c disturbance input

over the heater strip are shown in Figure 6.9 for all flow quantities. Both surface 1w
and contour representations of each Fourier mode are shown _fter nine periods

have
step L - 540). The two-dimensional modes (k - 0) |been computed (time

comprise the two-dimensional Tollmien-Schiichting wave and are shown in Figures

6.9a through 6.9d. The three-dimensional modes (k = 1) comprise the three- I
dimensional oblique waves and are shown in Figures 6.9e through 6.9k. The local m

influence of the heater strip on the di_erent flow components can be seen, but a 1
detailed discussion of the effect of the heater strip is again delayed until Section I
6.2.1. In Figures 6.9d and 6.9k, the two-- and three-dimensional temperature

fluctuations are shown. The temperature serves only as a perturbation input and 1
1

the effect remains local to the heater strip. The disturbance waves show a decay

at first and then begin to amplify downstream. This behavior is in agreement 1
with the linear stability diagram of Figure 6.1 in which the calculation begins in

mh

a damped region and then crosses the neutral curve into a region of amplification. 1
Although the stability diagram is for two-dimensional disturbances, the three-

dimensional growth is similar to the two-dimensional growth for this particular 1

oblique angle. I

1
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The conservation of mass ior the disturbed flow is shown in Figure 6.1 q

I for bot_ Fourier modes 1 and 2 at time step L = 540. The velocity divergence

i is ]arsest at the wall and over the heater strip. This is again due to the large
gradients present at the wall The maximum diversence occurs at the boundaries,

I satisfying the maximum principle. The vorticity divergence is also monitored in
Fourier space as a check on the qus_ty of the solution. Figure 6.11 shows mode I

I vorticity divergence at time step L ---540. Mode 0 vorticity divergence is satiated

trivi_]ly. There is again a noticeable spike at the wall over the heater strip due

to the large gradients present there. Unlike the velocity equal.ions, the vorticity

I equations do not satisfy a vorticity diversence maximum principle. The maximum
divergence is in the region of maximum shear at the wall.

i A verification of the code is that the disturbed flow comuutations for

linear perturbations reproduce closely the Orr-Sommerfeld solution. Amplitude

I and phase pro/lies are obtained by a Fourier time series analysis over one pe-

riod of osci]latiou from time steps 480 to 540. The Orr-Sommerfeld equation i_

I solved as described in Appendix B for both ;wo--dimensional Tolhnien-Schlichtin 8

I waves and three-dimensional oblique waves. The linear stability theory solution is
compared with the Navier-Stokes solution at a displacement thickness Reynolds

I number Re6t = 800 (n = i;'5). Since the an eigen-
Orr-Sommerfeld solution is

value problem, the amplitude is not part of the solution. In order to compare the

I amplitudes from the Navier-Stokes computation with the Linear stability theory

I solution, a multiplication constant CLST is found. This constant is determined by
normalizing the Navier-Stokes solution with the linear stability theory calculation

I at the ma_im,,m of the U_ dis,urbance velocity, or

Uh

I CLST = _. (6.3)ULST

!
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All araplitudes are then multipl/ed by this ¢oefiicient. Figure 6.12 displays the I

exceptional agreement in amplitudes and phases for both mode 0 and mode 1 !
for each flow component. The temperature modes are not compared since the

temperature perturbations have decayed rapidly shortly downstream of the heater I

strip and the flow field downstream is unheated. CompariLon of growth rates and

wavenumbers with theory and experiments is made in Section 6.1.2 in conjunction I

with a comparison for uniform passive control.

The results of the uncontrolled linear disturbances for the frequency F - I

1.55 are now presented. For brevity, however, not all flow quantities that were I
shown for the frequency F = 1 are shown _ain for this frequency. Instead, only

the quantities are shown that illustrate dii_erences between the two frequencies. I

The Fourier modes are shown in Figure 6.13 for the U_ velocities. Each Fourier

mode is shown after Ii periods have been computed (time step L = 660) in both I

surface and contour representations. The two-dimensional mode (k = 0) is shown I
in Figure 6.13a and the three-dimensional mode (k = 1) is shown in Figure 6.13b.

Both modes show a slight dec_y and then growth as the first branch of the neutral I
curve is crossed. For mode 1, the second branch of the neutral curve is also crossed

towards the end of the periodic solution domain which can be seen by the reduction I

in growth in this region. Agaiu, the two-dimensional growth is as expected from

the linear stability theory diagram of Figure 6.1. I

Amplitude and phase profiles for frequency F = 1.55 are obtained by I
r_ Fourier time series analysis over one disturbance period from time steps 600

to 660. Cor_parlson with the Linear stability solution for the U_ velocities is I

shown in Figure 6.14 at a displacement thickness Reynolds number Re6z = 800

(n = 272). Again the Navier-Stokes solution is normalized by the coefficient cr.sT I

given by Equation (6.3). The agreement is very good for both mode 0 and mode

I
!
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i. Comparison of the growth rates and _avenumbers with theory is again delayed

I until the next section.

I 6.1.2 Uniform Passive Control Applied to Linear Disturbances

In the preceding section, the generation of uncontrolled linear two-- and

I three-dimensional disturbances was shown. In this section, this same flow is con-

i trolled, using a uniform surface temperature distribution. Four cases are shown for
each frequency, three with uniform passive heating and one with uniform passive

I cooling applied at the wall. The three heating cases are chosen so that comparison
with experimental and theoretical work can be made. The numerical simulation

I of a cooled wall is chosen to demonstrate the opposite effect cooling has on the

stability characteristics of the flow. The parameter p in Equation (6.1) is 0 since

I the sarface temperature distribution is constant at the wall. The final parameter

I in Equation 6.1 to be defined is A0. The following four cases are considered:

I Table 6.1 Parameters for Uniform Heating Casesfor Linear Amplitudes

II (°F) (°el
1.00 0.0 3.0 1.667 1.667/3

• 1.00 0.0 5.0 2.778 2.778/3
| 1.00 0.0 8.0 4.444 4.444/3

1.00 0.0 -5.0 -2.778 -2.778/3

I 1.55 0.0 3.0 1.667 1.667/3
• 1.55 0.0 5.0 2.778 2.778/3

1.55 0.0 8.0 4.444 4.444/3

I 1.55 0.0 -5.0 -2.778 -2.778/3

I The parameter Ao has the value of 3 in the denominator due to the nondimen-
sionalization.

i -The results for AT = 8°F are presented in detail for the frequency F =

I
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1 and then compared with the other cases. First the heated undisturbed flow
m

solution is shown in Figure 6.15. The us-/', VaT, and _,sr components appear m

very similar to the unheated base flow. The undisturbed temperature TaT is n
u

shown in Figure 6.15d. The temperature at the wall is constant except over the

heater strip location, where the steady state contribution to the heater strip input l

iS _n.
am

The growth of the boundary layer for each case is shown in Figure 6.16 m

in which comparison is made with the unheated profile to discern the dit[erences n

with the heated undisturbed flow. The boundary layer growth is about the same

for each case, but the heated profiles show a slishtly smaller boundary layer dis- I
i

placement thickness, while the cooled profile shows a slishtly larser boundary layer
n

displacement thickness. The skin friction coefficient for the heated and cooled wall m

is compared with th_ unheated base flow in Figure 6.17. The skin fricticn, hence •

the slope of usT at the wall (or _us'r) is larger for the hea_ed wall and smaller
|

for the cooled wall. The heated flow thus has a fuller velocity profile at the wall. I
m

The Fourier modes for the uniformly controlled disturbed flow [or AT =
m

8°F axe shown in Figuz-e 6.18 for all flow quantities. Both surface and contour i

representations of each Fourier mode are shown at time step L - 540. The same m

contour levels are chosen as in the uncontrolled flow simulations so that easy com-

parison can be made. For both the two-- and three-dimensional components, the l

influence of the uniform passive control on the disturbed flow is clearly exhibited.
m

The flow components show a strong damping downstream of the disturbance in- m

put. In Figures 6.18d and 6.18k, the two- and three-dimensional temperature m

fluctuations are also visible downstream of the disturbance input. The tempera-

ture perturbations are propagated due to the passive wall heating. The behavior m
m

!
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of the tw_dimensional waves is in qualitative agreement with the linear stabil-

I ity diagram of Figure 6.1b for A_ = 8°F in which decay is expected for the

i computational domain investigated.To i]Instrate the effects of heating for all four cases, amplitude and phase

I profiles are shown in Figure 6.19 for all cases as well as the uncontrolled solution.
The comparison is made at a displacement thickness Reynolds number Re_ t - 800.

I With each incremental increase in the amplitude levels are reduced, while
heating,

the cooled wall case shows an increase in the amplitudes. However, the temper-

I ature perturbations show a different picture. In Figures 6.19d and 6.19k, the

i amplitudes of the temperature perturbationb increase with increasing wall heat
input and the highest level reached is for the cooled temperature input (which is

I actually a negative heat input). For the unheated wall, the very low level tem-
perature residual that is created at the heater strip can be seen. The influence oi

I this low amplitude temperature on the flow is negligible, temperature per-
The

turbations increase with increasing heat input due to the increasing temperature

I gradients at the wall. For all flow variables, the shape of the amplitudes does

i not significantly change. The phase profiles also do not show significa_t changes
with uniform passive control applied. The location of the phase jumps remains in

I approximately the same location. The phases for the temperature perturbations

do not show a similar trend. The temperature perturbation for the unheated wall

I is on the same order as the numerical resolution making a smooth phase difficult

to compute. In addition, the cooled wall shows a shift of lr with the heated wall

I case due to the opposite sign of the temperature.

I For passive control, the amplitudes are reduced. In addition, the growth
rates are also affected. The growth of the ampLitude downstream is shown in

I Figure 6.20 for all cases. The amplitudes at the maximum of the [To and Ux

!
!
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velocities are plotted versus the streamwise direction z. The reduction in growth

rate with uniform wall heating cam be seen for both the two--dimensions/and I

three-dlmensions/components. In contrast, the influence of cooling is to increase Ithe growth rates.

The influence of uniform passive control on the growth rates and wavenum- I

bets is shown in Figures 6.21 and 6.22. The growth rate ai is calculated from the

Navier-Stokes solution by I

I dA0 (6.4a) Iai2o = A0 dz"
1 dA1

ai=o - AI dz (6.4b) I

where A0 and Al represent the two- and three-dimensions/amplitudes, respec-

tively, of the flow variable chosen for analysis. The wavenumber is calculated I

by |

_,,o= -_- (6.5a) |

_,,o= _- (6.5b) |
where _0 and _I represent the two- and three-dimensions/phases, respectively,

for a particular flow variable. Both the amplification rates and wavenumbers I

are computed st the maximum of the Ul, and the maximum of the Vj, velocities.

The growth rates versus the displacement thickness Reynolds number are shown I

in Figure 6.21 for the four passive control cases as well as the unheated wall. In

addition, the growth rates predicted by linear stability theory for an unheated wall I

are also shown. Th_ two-dimensional growth rates are shown in Figures 6.21a and I

6.21b for the U0 and V0 velocities. The strong region of amplification near Re_t =

600 occurs just downstream of the heater strip as the temperature perturbations I

!
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create the disturbance waves. At the downstream side, the amplification shows s

I slight jump where the flow is not yet periodic. However, comparison is possible

i in the cen_.ral do.nain. For the unheated wall, the growth rates computed at the
maximum of the V0 velocity agree very well with linear theory. The differences

I in the growth rates computed from t_e first maximum of the U0 velocity are
attributed to nonparallel effects. The influence of nonparallel effects is discussed

I in more detail after comparison with experiments and theory for the heated flow

is made. The effect of uniform passive heating is to reduce the growth rates, while

I uniform wall cooling causes an increase in the growth rates. In Figures 6.21c

I and 6.21d, the three-dlmensional growth rates are shown. Again, the V1 velocity
compares better with linear stability theory for the unheated wall than the UI

I velocity. The three--dimensional growth rates are also reduced with increasing

wall heating and are larger when wal/cooUng is applied.

I The wavenumbers are shown in Figure 6.22 based on the maximum Yh

velocity for both the two- and three--dimensional modes. Again, the wavenumbers

I predicted by Linear stability theory for the unheated wall at a frequency F -- I are

I shown for comp_,-ison. The influence of heating on the wavenumbers is not large.
However, with uniform wall heating, the wavenumber is increased for both the

I two- and three-dimensional components. This slight increase represents a slight

decrease in the phase speeds with uniform passive heating applied. The opposite

t effect is observed for the cooled wall, i.e., the wavenumbers decrease with wall

i cooling. Results of uniform passive control at the frequency F - 1.5G are now

I shown. Again for brevity, only flow quantities are presented that illustrate differ-
ences between the two frequencies. The Fourier modes for the uniformly controlled

I -disturbed flow for AT = 8°F are shown in Figure 6.23 for the Uj, velocities. Both

t
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surface and contour plots are shown at time step L - 660. Again, both the two-

three-dimensional flow components exhibit a strong damping 1
dimenmonal and

downstream of the disturbance input. The two-dlmensional growth is in qualita-
I

tive agreement with the linear stability diagram of Figure 6.1b for AT = 8°P in

which the flow is in a stable region. I

To compare the effects of the different heating levels for F - 1.55, am-

plitude and phase profiles are shown in Figure 6.24 for the Uh velocities. The I

comparison is made at J{e_ - 800 and the uncontrolled solution is shown as well.

As seen for the frequency F -- 1, with each increase in heat input, the amplitude 1

levels are reduced, while the cooled case shows an increase in amplitude level.

Again, the shape of the amplitude does not significantly change and the location l

of the phase jumps remains in approximately the same location, m

The growth of the amplitude downstream for all cases is shown in Figure

6.25 at F -- 1.55. Again, the amplitudes at the maximum of the Uh velocities 1

are plotted versus the streamwise direction z. The reduction in growth is clearly

observable with the uniform passive heating applied and the increase in growth I

with uniform cooling can also be seen.

The influence of uniform heating and cooling on the growth rates and 1

wavenumbers at the frequency F -- 1.55 is shown _,nFigures 6..26 and 6.27. The I
tit

growth rates are shown in Figure 6.26 for the maximum of the U0 and 0"1velocities

and the maximum of the V0 and V1 velocities versus the displacement thickness I

Reynolds number. The growth rates from linear stability theory for an unheated
I

wall at F -- 1.55 are also shown in Figure 6.26. As was seen for the frequency I

F = I, the growth rates for the unheated flow agree better with linear stability

theory for the Vh velocities. The differences with linear stability are attributed

again to nonparallel effects. The influence of uniform passive heating is again to lira

!
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un/formly reduce the growth rates, wh/le cooling increases the growth rates. For

I this frequency, the influence of heating is to completely stabilize the flow (except

i for a small re,on calculated by the 1/o velocity).
The influence of passive heating on the wavenumbers for F = 1.55 is

I shown in Figure 6.27, where the wavenumbers are computed at the maximum of
the I/0 and I/i velocities. The same trends are seen for this frequency as for _' = I.

I The effect of heating is not large, but the wavenumbers increase with heating,

while the el[ect of cooling is to slightly decrease the wavenumbers.

Comparison with theory and experiments is now made for both frequen-

i cies with uniform heating applied. Only the linear two-dimensional amplifica-
tion rates are compared since the experimental and theoretical work was for two-

I dimensional To]]mien-Schlichting waves. Figure 6.28 shows a comparison for dif-
ferent heating levels at Re6_ = 800 for F = I and Figure 6.29 shows a comparison

I at Re6_ = 800 for F = 1.55. In Fig'Ires 6.28a and 6.29a, the amplification rates

from the numerical simulations are calculated at the first maximum of the U0 ve-

I locity and, in Fi_tres 6.28b and 6.29b, the amplification rates from the numerical

I simulations are calculated at the maximum of the 1/0 velocity. Shown for com-
parison are the linear stahility theory results of Lowell (1974) and E1-Hady and

I Nayfeh (1979) for a parallel uniformly heated boundary layer. Also, the nonparal-

lel analysis of EI-Hady and Nay_eh (1979) and the experimental work of Strazisar,

I Reshotko, and Prahl (1977) is shown in Figures 6.28a and 6.29a. In the nonpar-

allel analysis and the experiments, the growth rates were calculated at the frst

I maximum of the U0 velocity. Therefore, comparison with the full N_vier--Stokes

I solution is made only for the [Tovelocity for the nonparallel theory and experimen-
tal results. In addition, the experimental Reynolds number was near Re6_ - 800,

I but not exactly at this Reynolds number.

!
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First, it can be seen that the linear stability theory of Lowell (1974) and

EI-Hady and Nayfeh (1979) agree for the cases shown. Lowell (1974) does pre- I

dict a damped growth for _ - 8°F and F = I, but an exact value could not

be discerned. At F = 1.55, Lowell's resldts (1974) show a completely stabilized I

boundary layer for _ = 5°F and A_ = 8OF, but again exact values were not m
available. The growth rates obtained from the Navier-Stokes calculations differ

somewhat from linear stability theory for the U0 velocity, but the agreement is I

quite good for the V0 velocity. Differences are attributed to nonparal/el effects and

are discussed shortly. In the ]]near stability theory calculations, all fluid property I

variations with temperature were considered, while in the numerical investigations

of this work, viscosity is the only fluid property that varies with temperature. How- I

ever, Lowell's results (1974) showed no appreciable differences for even larger levels S
of heating with the linear stability investigations of Wazzan, Okamura, and Smith

(1968, 1970a, and 1970b) in which only the viscosity variation with temperature I

for the base flow was considered.

Since there is a slight deviation between the Navier-Stokes solutions with I

Linear stability theory and the nonparallel theory, a convergence study was per- m

formed. It was found that, with the step size in y halved, tae growth rates agree I

even more closely with linear th¢o.,T. In fact, the agreement is within 2% for the
|

V0 velocity with this step size halved. The simuia{ions reported in this work were

not run with this finer step size to save on computational time. However, the Iss
trends are the same with both step sizes.

nonparallel analysis of E1-Hady and Nayfeh (1979) does not show I
The

good agreement with the Navier-Stokes solution. However, if the nonparallel

theory of Gaster (1974) is compared for the unheated waE vith the nocparallel

theory of E1-Hady and Nayfeh (1979), large discrepancies exist between the two Ilk

|

!
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nonparallel theories. Gaster's nonparallel results (1974 and 1986) for F = 1 are

! -shown in Figure 6.30a for AT = 0°F. Comparison is made with the Navier-

I Stokes solution and linear theory, as well as the nonparallel theory of EI-Hady
and Nayfeh (i979). Agreement with the Navier-Stokes calculations is better for

I nonparallel theory (1974). experimentally amplification
Gaster's The determined

rate is at Re# l = 770 for AT = 0°F. For comparison at this Reynolds number,

I the Navier-Stokes solution differs with the experimental results for the unheated

I bo_mdarylayer by less then 1%. With the step size in y halved, the a_eement
between the Navier-Stokes solution and the nonparal!el theory of Gaster (1974)

I is excellent (less than 5% _:_erence).

For F = _ , ,esults for several Reynolds numbers from Gaster's non-

I parallel theory (1974) are not available, but comparison is made in Figure 6.30b

I for AT = 0°F for both the nonparallel theory of EI-Hady and Nayfeh (1979) and
the, experinaents o£ Strazisar, Reshotko, and Prahl (1977). The cxperimentally

I determined growth rate is again at Re61 - 770. The experimental results
compare

better .._th the numerical simulations than with the nonparallel theory for the

I unheated flow.

I In addition, the experimental work for the heated boundary layer com-
pares better with the Navier-Stokes calculations at F - 1 than with :he nonpar-

I anel theory. The experimentally determined amplification rates for F - 1 all
are

positive with uniform heating near Re61 -- 800, indicating a damped flow. The

I exact values are not discernible from the experimental figure. However, the am-

I plification rates computed from the numerical solution of the uniformly heated
boundary layer are also positive, showing better agreement than the nonparallel

I theory.

I
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For the frequency F - 1.55, the experimental comparison is not as good.

The amplification rates obtained from the experiments of Strazisar, Reshotko, and I

Prahl (1977) are near Re_ -- 800, but not exactly at this Reynolds number. How-

ever, the slight differences in the experimental Reynolds numbers do not account I

for the discrepancies between the numerical simulations aud the experimental re-

suits. In the experiments, the ampfification rates decrease with increasing heating

for AT - 3°F and A_ -- 5oF at F - 1.55, but the amplification rates show a •

sligh_ increase for A._ - 8°F. This same trend is not predicted by the nonparal-

lel theory of EI-Hady and Nayfeh (1979) or the full numerical simulations. The I
J

nonparallel effects alluded to in the experimental investigations are not seen in

this work. In the numerical computations, the neutral curves do not cross for the I

two frequencies investigated, but the neutral curves did cross in the experimental

investigations for F - 1.55 (refer to Figure 6.1a). One comment on the experi- I

mental values presented here is in order. The experimental growth rates shown in m

Figures 6.28 through 6.30 were based on the curve fits of the experimental data. I

These curve fits were made by $trazisar, Reshotko, and Prahl (1977). However,

the actual experimental data points show the same trends.

The growth rates predicted by the nonparallel theory of EI-Hady and
I

Nayfeh (1979), that are shown in Figure 6.28a and 6.29a, do not include the

distortion of the eigenfunction with streamwise position in the definition of the I

growth rates. However, it appears from their analysis that agreement with the

Yavier-Stokes calculations is better _hen this distortion is included. However, l

comparison was not available for this Reynolds number and the temperature dif-

ferences considered. I

Comparison of the Reynolds number at the lower branch of the neutral •
|

curve is made with the linear stability theory of LoweU (1974) and the expori-

mentally determined neutral curves of Strasisar, Reshotko, and Prahl (1977) for

!
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frequency F = 1. Figure 6.31 shows the Reynolds number for ai = 0 (lower

I branch) versus the different levels of heating. In Figure 6.31a, the neutral points

I are based on the first maximum of the U0 velocity and for Figure 6.31b, the neutral
points are based on the maximum of the V0 velocity. The Reynolds numbers at

I unstable increase with each incremental level of heating.
which the flow becomes

Once again, the comparison with parallel [{near stabil_ty theory is better for the

I V0 velocity than for the U0 velocity. The experimental comparison agrees wen

I for AT - 0°F, AT - 5°F, and AT - 8°F. Comparison was not av_]able with
experiments at AT - 3°F. In addition, the convergence study with the normal

I step size halved shows closer with linear for the
even agreement stability theory

neutral points.

I For the frequency F - 1.55, only the AT - 0°F and AT -- 3°F heating

I levels show a region of amplification based on the V0 velocity, while only -'he
unheated wall becomes unstable for amplification rates based on the U0 velocity.

I The cooled wall becomes unstable based either The values
on velodty. of the

Reynolds numbers at the neutr_ points are difficult to predict since the neutral

I curves are close to the heater strip and the region of strong amplification is near

I the neutral curves. However, the parallel linear stability theory of Lowell (1974)
shows a region of amplification for only the AT - 0°F and _T = 3°F heating

I just the numerical simulations showed for the
cases, a_ _mplii_cation rates based

on the V0 velocity. In contrast, the experimental work of Strmisar, Reshotko, and

I Prahl (1977) shows and unstable region for F = 1.55 for all levels of heating. The

I behavior of the heated boundary layer at the higher frequencies that was predicted
by the experiments is not predicted by the parallel theory, the nonparallel theory,

I Navier-Stokes calculations.
or

!
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6.1.3 Nonuniform Pmsive Control AppLied to Linear Disturbances

The enhancement in stability was shown with uniform passive wall heat- I

in 8. However, a nonuniform wall temperature distribution can lead to even larger

stabilization of the flow and requires less heat input than for uniform passive heat- I

ing. Two different nonuniform temperature distributions of the power law form I
A0z_ are considered for both frequencies F = 1 and F = 1.55. The two exponents

considered are p - -0.5 and p - 1.0. The following cases of nonuniform passive I
heating are considered, where the 3 in the denominator of A0 is again due to the

nondimensionalization: I

Table 6.2 Parameters for Nonuniform Heating Cases I
for Linear AmpLitudes

(°F) (°C) I

1.00 --0.5 3.0 1.667 2.499/3

1.00 -0.5 5.0 2.778 4.218/3 I
1.00 -0.5 8.0 4.444 6.879/3

II

1.00 1.0 3.0 1.667 0.764/3 II

1.oo 1.o 5.0 2.778 1.265/3 B
1.00 1.0 8.0 4.444 2.004/3

N

1.55 -05 3.0 1.667 2.5Ol/3 •
1.55 -0.5 5.0 2.778 4.226/3 |
1.55 -0.5 8.9 4.444 6.897/3

1.55 1.0 3.0 1.667 0.764/3 •
1.55 1.0 5.0 2.778 1.267/3 II
1.55 1.0 8.0 4.444 2.010/3

!
The parameters are chosen to simulate the experimental work of Strasisar and

(1978).Comparison of thesetwo nonuniformsurfaceheating distribu- I
Reshotko

tionsismade with the experimentsof Strazisarand Reshotko (1978) and the

nonparallel theory of Nayfeh and E1-Hady (1980), as well as the uniform heating W

case p = 0.0. In the experiments, the wall temperature is held fixed at a ref- II
I

I
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erencelocationz, correspondingto a Reynoldsnumber Re6_(z,.)= 800 forthe

I unheated case. The temperature is held c_nstant in the nlune_:a_ simulations at

I this Reynolds number. This causes a sligl, t shift in the physic_l reference loca-
tion when heating is applied, but is small so that comparison with experiments

l can still be made. The power law temperature distributions are shown in Figure

6.32 for the case of A_ = 8°F at Re_ I = 800 for each frequency. For p = -9.5,

I the temperature difference is lar8er than for the uniform heating case at all Io-

cations upstream of Re61 - 800, while the temperature difference is below the

I uniformly heated case for p = 1.0. Downstream of Re6_ - 800, the temperature

I difference decreases below the uniformly heated level for p - -0.5, but increasesOUST

for p = 1.0. For an in<teased temperature difference, the velocity profde

I is fuller, thus enhancing stability. Therefore, the nonuniform wall heating case

of Aoz_ °'s should provide a more stabilizing influence than Aoz_ "° and A0z °'°

I upstream of Re_ = 800, while A0z_ "° is more stabili_.ing downstream of the ref-

erence location. This is an important point in compaxing different nonparMlei

I surface temperature distributions and has been discussed by Asrar _ad Nayfeh

| (198s).
For the nonuniform surface temperature distributions used in this work,

I the reference is located towards the end of the periodic solution domain for
point

the.disttu'bedflow.Therefore,itisexpectedthatthe exponentp - -0.5 ismore

I stabilizing than p - 1.0 for the numerical simulations performed in this work.

Results of nonuniform surface heating for the frequency F = I ere shown

l first followed by the results for the frequency F = 1.55. Once again, only a

I few flow quantities axe s[_own that illustrate the differences between uniform and
nonuniform passive cc,ntrol. First, Figure 6.33 shows the undisturbed temperature

I -TST for p = -0.5 and p = 1.0 for AT = 8°F at Re6_ = 800. The decrease, in

!
II .__ ---",
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the steady state temperature with increasing streamwise location z is visible in

6.33a for a temperature distribution of A0z_ °'_, while the increase in the IFigure

steady state temperature in _,he streamwise direction is seen in Figure 6.33b for a

temperature distribution of AoZ_ "°. I

To distinguish the effects of the three different heating levels and the two U

different surface temperature distributions on the undisturbed flow, the boundary

layer growth is shown in Figure 6.34 for p = -0.5 and p = 1.0. The influence of I

the negs:ive value of p is similar *,othe uniform surface temperature distribution,

as was seen in Figure 6.16. Ho_,ever, for p = 1.0, the boundary layer growth is I

nearly the same as for the unheated flow at the beginning of the solution domain. m

The skin friction coefficients are shown in Figure 6.35 for both nonuniform surface l

temperatu,'e distributions. The skin friction is larger for p = -0.5 than for p = 1.0 g
M

at the beginning of the streamwise domain, while the opposite occurs near the end

of the domain. The larger skin friction denotes a fuller base flow velocity profile I

and enhanced stability.

To illustrate the effect of each nonuniform heat distribution, the Fourier I

modes for the case of AT = 8°F at Re6t - 800 are shown in Figures 6.36 and 6.37

for the U0 and U1 velocities. The two- and three-dimensional modes are shown at

time step L = 540 in both surface and contour representations. In Figures 6.36a
g

and 6.36b, th_ results for p = -0.5 are shown, while the U0 and Ut velodties

for p = 1.0 are shown in Figures 6.37a and 6.37b. The differences in the level of I

control achieved are apparent. Comparison with the uniformly controlled flow of
m

Figures 6.18a and 6.18e show that the nonuniform temperature distributions for I

the exponent p = -0.5 has created at least the same level of control, while the |
disturbance :evels are not as strongly attenuated for p = 1.0. Comparison of the

different cases is shown later based on the actual heat input at the wall.
|

!
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The different levels of control for each nonuniform surface temperature

I distribution are compared in Figures 6.38 and 6.39. Amplitude and phase profiles

I are shown for the U0 and Ux velocities at Re# t = 800. As for the uniformly
heated wall, the amplitude levels are reduced for each incremental increase in

I heating. In addition, the location of the phase jumps remains in approximately
the same location. However, the diffe_nces between the two nonuniform surface

I temperature distributions are apparent in the amplitude levels. For p = -0.5,

Figure 6.38 shows a slightly larger decrease in ma_aitude when compared with

I the uniformly controlled case shown in Figures 6.19a and 6.19e. The opposite

effect is found for p = 1.0, as seen in Fis_tre 6.39, where the amplitude levels are

I higher than for the uniformly heated wMI.

I The amplitude levels at one streamwise z location can be deceiving for
the nonuniform]y heated flow due to the location of the reference poinL Therefore,

I thegrowth oftheamplitudedownstream isshown in Figures6.40and 6.41atthe

maximum ofthe [Toand U1 velocitiesforboth p - -0.5 and p - 1.0.Again,the

I same observations can be made. The effect of heating is to decrease the amplitude

I levels and reduce the growth rates, but the stabilizing influence is more pronounced
for p = -0.5. The periodic solution domain ends just dowr.stream of the reference

I location. Thus the p = -0.5 exponent should have a more stabilizing influence

than p = 1.0 and p - 0.0.

I The change of the growth rates with Resx for the nonuniform control

simulations are shown in Figures 6.42 and 6.43° The growth rates for p = -0.5

nonuniform control are shown in Figures 6.42a and 6.42b based on the Uo and

I V0 velocities and the growth rates for p - -0.5 nonuniform control are shown.in
Figures 6.42c and 6.42d based on the Ux and Vx velocities. Figure 6.43 shows the

I rates for 1.0 nonuniform control. Several observations
analogous growth P Can

!
I
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be made from these plots. The growth rates in all cases decrease with increasing

wall heating. In comparison with Figure 6.21 for the umform passive control I

simulations, the nonuniform distribution p - -0.5 is more stabilizing, while p -

1.0 has a smaller increase in stabl]ity. However, for both the two- and three-- I

dimensional components, the amplification rates for p = 1.0 are becoming more

positive at a higher rate for increasing downstream distances. This is due to the I

increasing temperature difference between the wall and the freestream. I

The wavenumbers based on the V0 and VI velocities for both nonuni-

form surface temperature dlstributior__ are shown in Figure_ 6.44 and 6.45. For I

p - -0.5, the wavenumbers increase for both the two- and three--dimensional
I

components with increasing wall heating, as was the ease for uniform heating. I

The level of increase in the wavenumbers is larser for the uniform heating. How- •

ever, for p -- 1.0, the wavenumbers decrease with increasing heat input for both

the two-- and three-dlmensional components. This decrease in a, for p -- 1.0 I

represents an increase in the phase speeds.

heating for the frequency F = 1.55 are now I
R_sults of nonuniform surface

presented. Again, only plots that i]lustzate differences between the two frequencies

and the uniform heating cases are discussed. The Fourier modes for A_ = 8oF at I

Re6: = 800 are shown in Figures 6.46 and 6.47 for the U0 and UI velocities. Both •

surface and contour plots are displayed at time step L - 660. Figure 6.46 shows

the downstream development of the d_sturbance waves for p = -0.5, while Figure I
I

6.47 shows the downstream development for p - 1.0. The disturb_ace wave is

both nonuniform control distributions, but the p = -0.5 case is I
attenuated for

more strongly attenuated.

To cotnpare the dif[erent levels of control for each nonuniform surface I

temperature distribution, amplitude and phase pro_es are shown in Fi_-Jres 6.48 •
|

!
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and 6.49 for the [.Toand U1 velocities at Re6_ = 800 for F - 1.55. For each

I incremental increase in heatins, the amplitude levels are reduced. The differences

I between the two nonuniform surface temperature distributions are again apparent.
The nonuniform case of p - -0.5 has a largereffect on the flow when compared

I with the p = ,._ walt heating case as well as the uniformly controlled case shown

in Figure 6.24.

I As was discussed for the frequency F - 1, the amplitude levels at one

streamwise z location can be misles_ng when a nonuniform temperature distribu-

I tion is used. Figures 6.50 and 6._ I show the growth of the amplitude downstream

I at the maximum of the U0 and U1 velocities for both p = -0.5 and p - 1.0.
Although the flow is more stabilized for A0z_ 0"5, the Aoz_ "° temperature distri-

I bution shows a stronger decrease in amplitude towards the end of the periodic
solution domain.

I The growth rates for frequency F - 1.55 and nonuniform control are

I shown in Figures 6.52 and 6.53. Again the growth rate based on the U_ and V_
velocities are shown for both the two- and three-dimensional components. Similar

I observations are made as for F = I. The growth rates decrease with increasing

wall heating. The nonuniform distribution p = -0.5 is more stabilizing than for

I uniform passive heating, as seen in Figure 6.26. In contrast, a smaller decrease in

the growth rates occurs for p -- 1.0. Once again, the amplification rates for p - 1.0

I become increa_nsly positive downstream for both the two- and three--dlmensional

i components. This is attributed again to the increasin 8 temperature difference for
p -- 1.0 downstream.

I The influence of nonuniform surface heating on the wavenumbers for
F - 1.55 is shown in Figures 6.54 and 6.55. The wavenumbers based on the

I maximum of the V0 and V1 velocities are shown. The results are similar to the

!
I
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frequency F -- I. The wsvenumbers increase with increasing wall heating for

p - -0.5 and decrease with increasing heat input for p - 1.0. I

In order to accurately compare the nonuniform temperature distributions

Iwith the uniform heating cases, the actual heat input to the wall should be com-

pared. Figures 6.56 and 6.57 show such a comparison for F -- 1 and F - 1.55. I
Figure 6.56 shows the amplitude at the maximum of the Uk velocity at Re6_ = 800

for F -- 1 versus the heat input for each passive heating case considered. Both I

the two-dimensional and three-dimen_onal modes are shown. Figure 6.57 shows

a similar comparison for F -- 1.55. The heat input shown in the figures is the in- I

tegrated heat transferred at the wall for the periodic solution domain only. Thus

where q is the heat transfer rate per unit area and is siren by Fourier's law of heat

conduction, or I

 ffi0. !
For F -- 1, the periodic solution domain ends at zNp - 2.8 and for F - 1.55, zN, --

2.6. Considering Figure 6.33, the periodic solution domain is just past the reference I
location where t.h,..A0z_ "°temperature distribution should be more stabilizing. For

the largest extent of the solution domain, however, the temperature distribution I

Aoz_ °'s should be more stabilizing. Figures 6.54 and 6.55 show that the actual

heat input required for the same reduction in amplitude is smaller for p - -0.5 I

then for p - 0.0 and p -- 1.0. This makes tl_e temperature distribution Aoz_ °'s

the most energy ei_cient to apply. I

Finally, comparison with theory and experiments for nonuniform surface I
heating is made for both frequencies. Again, only the linear two-dimensional am-

plification rates are compared since the experimental and theoretical work was for I

I
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two-_mensional waves. Figures 6.58 and 6.59 show a comparison of the amplifica-

I tion rates at Re_ t ffi 800 for different levels of heating and F = 1. In Figures 6.58a

I and 6.59a, the amplification rates from the numerical simulations are based on the
first maximum of the U0 velocity and in Figures 6.58b and 6.59b, the amplification

I rates are calculated from the numerical simulations based on the maximum of the

1/0 velocity. In Figure 6.58, the temperature distribution applied at the wall is

I Aoz_ °'s and in Figure 6.59 the temperature distribution is 1 0Aoz;; . Figures 6.60

and 6.bl show a similar comparison for frequency F -- 1.55. The linear stabil-

I ity theory results of Nayfeh and El-Hady (1980) for both a parallel nonuniformly

I heated boundary layer and a nonparallel nonuniformly heated boundary layer are
also shown. In addition, the amplification rates from the experimental work of

I Strazisar and Reshotko (1978) are compared. As for the uniform passive heating

cases, the growth rates were calculated at the first maximum of the U0 velocity

I in the nonparallel analysis and the experiments. Comparison of the experimental

work and the nonparallel theory with the numerical computations is made for only

I the [To velocity.

I As was the case for uniform heating, comparison of parallel linear the-
ory is better for the V0 velocity than the U0 velocity. The differences are again

I attributed to effects. The of andnonparallel nonparallel theory Nayfeh E1-Hady

(1980) shows the same trends in amplification rates as the Navier-Stoke. ¢alcu-

I lations, but are more unstable. This trend is the same found in comparing the

i uniform passive heating results of E1-Hady and Nayfeh (1979). It was shown then
that Gaster's nonparallel theory (1974) agrees better with both the Navier-Stokes

I calculations and experiments for the unheated flow.
The amplification rates from the experiments of Strazisar and Reshotko

I (1978) show a different picture. For F - 1 and p = -0.5, the exact experimental

!
nil I
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growth rates are not discernible, but show a positive value with nonuniform heating

applied. The amplification rates for the numerical simulations are also positive for N

p - -0.5 and F = 1. However, the nonparallel analysis shows amplification, not

damping. For F = 1 and p = 1.0, the same situation occurs. The experimental N

points indicate a stabilized boundary layer in agreement with the Nav/er-Stokes

calculations. However, only a_ for the temperature difference A_ = A0z_.o = 3oF l

at Re_x - 800 is discernible. The higher heating levels, though, show increased Nw
damping.

comparison with experiments for F = 1.55 is not as good for both I
The

nonuniform heating distributions. For p - -().5, the experimental amplification

rates Ue between the nonparallel theory and the Navier-Stokes calculations, but U

the trend towards stabilization for higher levels of heat input is found. However, g
g

for p --- 1.0, the growth rate increases for A0z_ "° = 3°F and then decrev_-s for

Aoz_ "° = 5°F. The growth rate for Aoz_ "° = 8°F is not discernible from the N

experimental work, but shows a damped value. The increase and decrease in
i

growth rates was also seen in the experiments of Strazisar, Reshotl:_,, and Prahl N

(1977) for uniform passive heating at F - 1.55. This trend is again not seen in •
a

either the full Navier-Stokes simulations or the nonparallel analysis.

6.2 Active Control of Linear Disturbances N

i

In the preceding section, small amplitude disturbances were controlled n
g

through the application of passive surface heating. The amplitude levels and

growth rates were reduced significantly below the uncontrolled flow case. As I

promising as passive control appears, active methods of control can be just as g

effective in reducing amplitude levels and require a much smaller heat input than N

passive heating. Results of numerical simulations of active control using localized m
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temperature perturbations for control inputs are shown in Section 6.2.2. Before

j proceeding directly to the active control simulations, boundaxy layer receptivity

I mechanisms for the surface heater strip are discussed in Section 6.2.1.

6.2.1 Receptivity of a Surface Heater Strip

I In Chapter 2, a bzlef discussion of receptivity was given. Receptivity

I refers to the process by which a particular forced disturbance enters the boundary
layer and ;he signature of this disturbance wave on the flow field. In this work, the

I of the localized is examined, understand-
receptivity temperature perturbation By

ing the receptivity mechanisms of a discrete surface heater, more ei1_cient heater

I strips can be designed to maximize (or minimize, depending on the application) a

i disturbance input. In addition, by attempting to understand the mechanisms by
which a localized temperature perturbation creates disturbance waves in the flow,

i active control can be improved upon.

First a consideration of the width of the heater strip is given. As shown

I by Equation (6.1), the streaxawise temperature distribution for the heater strip is

i of the form sin2(_n). This shape function was chosen to approximately simulate a
physical heater strip. Although different shape functions would lead to differing

I amounts of receptivity, only the heater strip width is varied in this receptivity anal-
ysis. Foar different discrete widths are studied in fractions of a two-dimezLsional

I dss 1 1 3Tollmien-Schlichting wavelength, i.e., ATS -- 4' 2' 4' and t. Only a receptivity

analysis of the two-dimensional heater strip is considered, but the same analysis

I could be done for three-dlmensional oblique waves. However, the trends should be

I similar.for both twc-dimensional and three-dimensional linear disturbance waves.
For this application, the maximum receptivity is desired, or the maximum distur-

I bance amplitude created for the smallest heat input to the heater strip, _ .o_._ant

!
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amount of heat input, as an input parameter, is not easily maintainable. There-

fore, the parameter e0Q of Equation (6.1b) is varied. Four different temperature I

I 1.5 2disturbance amplitudes are considered: _0o = 3 ' 3 ' 3 ' and . The value of 3

in the denominator is again due to the nondimensionallzation. Thus, for each ratio I

of --,dss four different levels of heating are considered. The same parameters used

_TS Ifor the uncontrolled flow of Section 6.1.1 for the frequency F = 1 are again used

for this receptivity study. The heater strips all start at zss_ = 30. Figure 6.62 I
shows a comparison between the heat transferred over the heater strip and the

dHs Ilevel of heating (or _#o) for the four different ratios of _'_TS"The heat transferred

over the heater strip is calculated by:

!
= (6.8)

The heat transferred increases with each incremental increase in heating. The I

wider heater strips also have larger heat inputs due to the larger surface area. I
To determine the most efficient width of heater strip, the amplitude of the two-

dimensional wall vorticity is monitored at a downstream location of about seven I

ToUmien-Schlichting wavelengths. The amplitude level created, by the time de-

pendent temperature perturbation input versus the amount of heat input for each I

disturbance wavelength is shown in Figure 6.63. It can be seen from this figure that I
the smaller heater strips are able to produce larger disturbances for an equivalent

heat input. The smaller heater strips are more receptive in terms of maximizing I
the disturbance levels in the flow field.

In an analytical study of boundary layer receptivity, Heinrich, Choudari, I

and Kerschen (1988) have found qualitatively similar results for a discrete suction

strip. Figure 6.64 shows the results of the analysis of Heinrich, Choudari, and Ker- I

schen (1988). A receptivity coefficient is plotted as a function of the strip width. I

I I I
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This receptivity coefficient F(d) is the ratio between the Tollmien-Schlichting am.

I plitude created in the flow field and the input amplitude at the suction strip. The

i four different curves represent different streamwlse locations of the suction strips
where I is the distance from the leading edge and l..p denotes the location of the

I neutral stability point. For comparison, the discrete heater strip is located near
the neutral stability point. From Figure 6.64, the maximum receptivity occurs for

I the very narrow suction strips of less than one Tollmlen-Schlichting wavelength
dxs

and receptivity is minimized for _ = 1. In the analysis, the mass flux at the
I wall is held constant.

i Although the location of the heater strip was net varied in this receptivity
analysis, Heinrlch, Choudari, and Kerschen (1988) show that the receptivity is

I affected by the location of the heater strip in relation to the distance from the
leading edge oi the plate (or consequently the displacement thinkness). In the

I experimental work of Nosenchuck (1982) and the analytical work of Maestrello

(1984), an optimal ratio of width of the heater strip to the displacement thickness

I is found. For Nosenchuck (1982), the experimental criterion found is

I 2 < dx_._.ss< 10- 61 --

I and for MaestreUo (1984), the analytical criterion found is

dHs

I 6__..._1 _<10"

i Nosenchuck (1982) suggested that the heater strip width ,IHs must be larger than
the displacement thickness 61 so that the perturbations created at the wall would

I rapidly perturb the flow in the critical layer. The critical layer is near 51 where
the most unstable waves begin to amplify. It was also suggested by Nosenchuck

I (1982)thatdss shouldnot be so laxgeso as tomake phase controldiflicult.For

I
III IIIII
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I
the different widths of heater strips examined here, the following table shows the

ratio of width to displacement thickness: I

Table 6.3 Comparison of
Displacement Thickness

g

to Heater Strip Width

dR....._s dR s I
A_s 61

0.25 9.8 I0.50 19.4
0.75 28.8
1.00 38.0 •

II

i

Thus the 0.25 wavelength heater strip, which was found to be the most receptive, I

also fails within the criterions of both Nosenchuck (1982) and Maestrello (1984).

dRs I
Although the beater strip of width "A'_s = 0.25 has the highest slope (or

highest ratio of amplitude to heat input), a large temperature input e0o is needed I

to achieve the same amplitude levels as the wider heater strips. A disturbance

amplitude of approximately 0.05% of the first maximum of the U0 velocity is I

desired in the numerical simulations and the beater strip of width dlfs = 0.5 AT$
am

and eSo = 2/3 creates waves of this amplitude level. Therefore, this heater strip is I

chosen for both the passive and active control simulations. The disturbance field

on and near this heater strip is now more fully examined. _I[

The perturbations created over the discrete heater strip propagate down- I
III

stream and develop into ToUmien-Schlichting waves shortly downstream of the

heater strip. Over the heater strip, the disturbances are not in agreement with I

the eigenfunctions of the Orr-Sommeffeld equation. The amplitudes and phases

at the center of the heater strip are shown in Figure 6.65 for the Uo and Vo velod-

ties, the fl,o vortidty, end the Oo temperature. Also shown for comparison is the •
|
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solution from linear stabiLity theory for Do, Ve, and N,o for this Reynolds number

I of Re6_ = 576. As before, the Navier-Stokes solution is normalized with the linear

I stability theory calculation at the first maximum of the U0 disturbance velocity.
Each flow quantity shows a large difference in comparison with the amplitude and

I phase calculations from linear stability theory. The first maximum of the ri0 ve-

locity has moved very close to the wall and the phase does not show the jump of

I lr. The V0 velocity is much smaller than the linear stability theory solution and

I the phase is changing rapidly near the wall. The spanwise vorticity fl, o shows the
most dramatic effect of the surface heater strip. The gradieut is very steep at the

I amplitude is almost six times as large as the Linear stability theory
wail and the

amplitude due to the time dependent temperature perturbations. Althoug_ the

I gradients are steep, the step size used in y is sufficient to resolve the physics. A

I numerical simulation with _Ay was run to provide a check on the solution. The
same strong gradients resulted. Finally, the amplitude of the temperature decays

I very rapidly close to the wall.

The disturbances over the heater strip are very different in shape than

I the linear stability solution, but the development into a Toilmien-Schlichting wave

I occurs shortly downstream of the heater strip. The amplitude and phase profiles
located one disturbance wavelength downstream from the end of the discrete beater

I strip are shown in Figure 6.66 for the two-dimensional flow compo,-nts. Com-

parlson with linear stability theory is made at the Reynolds number Re6_ = 646.

I The temperature perturbations have created instability waves in the flow in just a

I small distance. The amplitude of the temperature perturbations is now two orders
of magnitude smaller than over the heater strip. The temperature perturbations

I decay very rapidly downstream of the heater strip.

!
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It has been shown by both Nosenchuck (1982) and MaestreUo (1984) that

the local periodic surface heating can be related to normal velocity disturbances I

at the wall. However, as seen in Fig,ure 6.65b, the normal velocity V0 over the I
heater strip is not strongly influenced by the temperature perturbations. Rather

the spanwise vo_':ity _=o is the r_ost strongly influenced quantity. A relation- I
ship between the spanwise vorticity and temperature at the wall was derived in

Equation (2.3). This equation is repeated here for convenience: I

(2.3) |o,.o._y----O y--'--O

The localized heat disturbances are creating changes in viscosity. These changes I

in viscosity in turn are creating the strong gradients in the Sl:anwise vorticity. The

steep gradients remain local to the heater strip and the spauwise vorticity quickly t

reduces in amplitude level to linear values. Due to the close relationship between

the temperature and spanwise vort_y, the spanwise vorticity is chosen as the I

flow quantity monitored for phase adjustments in the active control simulations. I

6.2.2 Active Control Using a Surface Heater Strip I
In the active control simulations, a surface heater strip is used to intro-

duce the disturbances into the flow. The same parameters used in the numerical I
simulations of the uncontrolled linear disturbances of Section 6.1.1 are used here

at the frequency F - 1. In addition to the first heater strip, a second heater I

strip is located downstream to serve as the actuator. A schematic of the heater

strip arrangement for the _ctive control simulations is shown in Figure 6.67. The I

location of the downstream sensor is also shown in Figure 6.67. This sensor mon- I
itors the _panwise wall vorticity (hence the wall shear stress). An appropriate

phase relationship is then found between the sensor and actuator for controlling I

!
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the instability waves. This process is described below, but ._rst the wall boundary

I conditions for the second heater strip are shown

i for the undisturbed flow:

O'0,n,0 = A0_ -F sin2(_) (6.9a)

I and for the disturbed flow:

B e'o,,,,o= Ao=_+ _in2(&)[1+ _,o_(,e,_,+ j_ - _q,o)] (6.9b)
e'l,.,0= _e,_2(&) sin(_t,+j,, - z_1) (6.9c)

I where

2n -- X/-/B=

ZI-IB=--ZHB=
and

I ZHB2 <_zn "_ ZHB3 •

I T_s second heater strip is located between zf.Is= = 120 and zHE, = 135 and
is also approximately one half a Toll_ien-Schlichting wavelength wide. Several

I are concerning signal for the actuator. First, the amplitude
observations made the

input to the second heater strip is the same as that input to the initi.,_ heater

I strip (see Equation 6.1). Therefore, the amplification or damping that takes place

I between the two surface heater strips is not compensated for in these simulat;ons.
However, the neutral curve lies between _he two heater strips and so strong decay

I or growth is not present in this region. Secondly, the phase is adjusted by the
parameter j_" - A_h , where j = 1 for attenuation and j = 2 for reinforcement.

I The phase adjustments A_h are determined at the downstream The
sensor. phase

change is calculated by

I A_o:_,_,,o,X= (6.ZOa)

I
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where a_ is the wavenumber based on the spanwise wall vorticity flzo and fizz.

The length Az is the distance between the sensor and the actuator. For these I

active control simulations, the sensor is located at zHs = 240, or about four

ToUmien-Schlichting wavelengths downstream of the actuator. The phase inputs I

are calculated from the results of the uncontrolled flow of Section 6.1.1 and are

summa.dzed in the following table: I

Table 6.4 Parameters for Phase Control of Linear Disturbances I

dimension a,. I A_ A_

(radians) (degrees) I
2D 28.094 0.096 4.8 °

_ 3D 26.694 4.871 292.8° I

Two numericalsimulationof activecontrolof linearthree--dimensional I
disturbancesz.rerun.The firstcaseiswithj = 1 sothattheactuatoris180° out

of phase with the disturbances in the flow. The second case is with j - 2 so that I

the temperature perturbations are in phase with the disturbances in the flow _qeld.

Resultsofboth casesarenow shown. I

The undisturbedflow solutionforthe temperatureisshown in Figure

6.68. The steady state contribution to each heater strip is readily seen and the I

influence of the steady state temperature remains in the vidnity of the heater I
strip.

The Fourier modes for the U'0 and U1 velocities that result from the l

application of the second heater strip axe shown in Figures 6.69 mad 6.70. Figure

6.69 shows the results for the out of phase control (or j = 1), while Figure 6.70 I

shows the velodty perturbations with the in phase control (or j = 2) applied.

Both contour and surface representations of the U0 and U1 velocities are shown. I

The contour levels are the same as for the uncontrolled flow of Section 6.1.1 so I

!
• -- [
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that comparison can be made with Figm_ 6.9. Both the two-dlmensional and

I three--dimensional modes show a strong reduction downstream of the actuator for

i the out of phase input, wh_e the actuator that creates temperature perturbations
in phase reinforces the existing instability waves in the flow.

I In order to compare the active control simulations with the uncontrolled

flow, the amplitude profiles for the Ue and U1 velocities are shown in Figure 6.71.

I The profiles are shown at the downstream sensor location of n - 240 (or Re6_ -

885). The amplitudes are strongly reduced for the out of phase perturbations and

I significantly increased for the in phase temperature perturbations. It is also noted

I that, unlike the passive control results, the shape of the amplitude remains the
same. This is because the base flow does not change, except locally over the heater

I strip. It should also be noted that cancellation is not achieved for the in
phase

heater strip case. If an adjustment in the amplitude levels had been m_e, an

I even larger reduction would have been seen. However, the reduction in amplitude

level is already quite significant.

I It was shown in the passive control simulations that the growth rates

I are strongl_ influenced with passive heating. However, the growth rates are not
affected in active methods of control. Figure 6.72 shows the amplitude growth

I U 0 U1 amplitudes active control cases, as well
downstream for the and for both

as the uncontrolled case. The strong reduction (or increase) in the amplitudes is

I seen downstream of the actuator input, but the growth rates are no_ altered.

i Finally, a comparison between the passive and active control simulations
is made. Similar reductions in amplitude levels occurred for the uniform passive

! -heating case of AT = 8°P as for the attenuation case here, while the cooling case

of AT = -5_F resulted in approximately the same increase in a_aplitude level as

I in phase reinforcement case. The cooled wall requires five times more heat
the

!
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input than the heat input to the actuator, while the passively heated wall requires

seven times more heat input. This considerable savings in power makes active i

control an attractive approach.

!
6.3 Passive Control of Secondary Instability

To this point, only the control of linear amplitude disturbance waves has i

i

been demonstrated. Results of control applied at the early stages of the nonlinear ss

three-dlmensional secondary instability process are now presented. Uniform pas-

sire heating is applied to both the fundamental ordered peak-valley and the sub- i
J

harmonic staggered peak-valley breakdown processes. The parameters chosen for

the simulation of secondary instability closely model the experiments of Klebanot]_, i

Tidstrom, and Sargent (1962) for the fundamental breakdown and Kachanov and

Levchenko (1984) for the subharmonic breakdown. Boundary layer control is not B

applied in these experimental investigations. However, neither theoretical nor ex-

perimental investigations exist in which passive control of the spatial secondary

instability process is attempted. Therefore, the above experiments provide the i

reference cases for compaxison of the influence of passive heating on the secondary

instability processes. I

The physical experiments are performed in wind tunnels, but water is the U
fluid that is again used in the numerical studies. Comparison can then be made

with the linear amplitude control investigations. Several parameters remain the It
same as for the previous simulations including T_, 300, Pr, Re, U'oo, _, e, RA, and

2',. These parameters were presented in Section 6.1. The remaining parameters i

differ for the two experimental studies of the secondary instability process. First, m

the results for the fundamental breakdown are shown, followed by the results for g

the subharmon;c breakdown process. •
I

!
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6.3.1 Passive Control of the Fundamental Breakdown Process

I The parameters used in the st..dy of passive control of the ordered peak-

i valley breakdown process are Listed below.

i F2D= 0.588(_D = 5.88)
F_D= 0.588(_3_= 5.88)

I a,.u = 16.0

i a,. x = 16.2
7 = 24.3

I /(=2

i Az = 6.5043 x 10-3
A 9 = 5.3100 x 10-z

I At = 1.0686 x 10-2

i evo= 1.2x 10-3
eft = 2.4 x 10-4

I The frequencies for both the two- and three-dimensional disturbances are the

I same. The parameters are chosen to match as closely as possible the conditions

of the experiments of Klebanoff, Tidstrom, and Sargent (1962). The step size in

I the streamwise direction Az is chosen so that there are approximately 60 grid

points per disturbance wavelength. The normal step size Ay is determined so

I that the 9 direction spans 6.5 boundary layer displacement thicknesses at the

I inflow boundary and approximately five boundary layer displacement thicknesses
at the outflow boundary. The grid has 61 points in the normal direction and

I 901 points in the streamwise direction. Thus, the streamwise domain contains

I
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15 disturbance wavelengths. The position of the outflow boundary is initially five

wavelengths downstream (zs, -- 301) of the inflow boundary and moves at a speed I

Vs - 0.8. The time diacretization At is chosen so that there are 100 time steps per

disturbance period. The computation proceeds for eight disturbance periods. The I

periodic _olution domain extends to z,. -- 480. In tbls region, tests have shown

that the parameter K = 2 is sufficient to resolve the spanwise flow. I

For all passive control simulations of secondary instability, the distur- I
bances are introduced through a discrete suction and blowing strip at the wall.

The wall boundary conditions follow from Equations (5.29) and (5.69) I
for the undisturbed flow:

e_,.,0 = A0 (6.11a) I

and for the disturbed flow: I

V_,,, 0 = r(t)evo V,,(_,)sin0i, D tt) (6.11b)

Vii .,o = r(t)evtV. (_',.)sin(,3sD tt) (6.11c) I

where I

Vw(6,)= ,",,[20.25+ ,_,,(15.z8_5_,,- 3._.4375)]
!

,o, I
¢5Bt < ¢. < ZSE'---'3"t

-- -- 2

I
v,,,(6,)= -,_ [20.25+ _,,(15.1s75,_,,- :35.4375)]

I
for II

!
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Z SE----!_< Zn < Z SE_2

I with

_n = Z.-- ZSSl 2

I ZSBx --ZSBt

The suction and blowing strip is represented by a fifth order polynomial. The strip

I is located one disturbance wavelength downstream of the left boundary (zss_ = 60

and zss_ = 120) and covers one wavelength. The disturbance amplitudes evo and

I e_,_ are chosen so that the velocity perturbations create disturbance waves of the

I same amplitude as observed in the experiment_. A suction and blowing strip
is used to introduce the disturbances in the flow for the simulations of secondary

I instability" instead of _ heater strip that was used in the passive control simulations

of linear amplitude disturbances. A suction and blowing strip is used because

I there are some diiBculties in creating nonlinear amplitudes with a heater strip.

This difficulty is discussed in Section 6.4 in conjunction with active control of

I secondary instability.

I Although care has been taken to simulate _,he experimental conditions,
at least one deviation exists. Fasel, Rist, and Konzelmann (1987) have shown

I quite good agreement with the experiments of Klebanoff, Tidstrom, and Sargent

(1982) through their numerical simulations, but a small pressure gradient appears

I to _ ave existed in the experiments. The amplification ra_,es with zero pressure

gradient are smaller in the numerical simulations than in the experiments. With

I a small adverse pressure gradient of _z _- 0.004 a_plied in the numerical simula-

I tions, the numerical growth rates show very good agreement with the exper:_ental
growth rates. Although a slight pressure gradient may have been present in the

I experiments, this aspect of the flow is not simulated here =ince the objective is to

!
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study the influence of control by surface heating for a flat plate boundary layer.

As discussed in the introduction, pressure gradients have a similar influence on I

the stability of the flow as wall heating. Therefore, combining together these two

passive control mechanisms is not desirable for this study since the influence of I

heating is the focal point. I
As shown by Equation (6.1a), the wall has a uniform temperature dis-

tribution (p = 0) applied to it. The following three cases _- considered for the I

passive control of the fundamental breakdown process:

!
Table 6.5 Parameters for Uniform Passive Control

Cases of Fundamental Breakdown I
R,6, -Too -Too A0

(at z0) (°F) (°C) I1550 0.0 0.000 0.0

1501 8.0 4.444 4.444/4.444

1460 15.0 8.332 8.332/8.332 I

The base flow changes for the passive control simulations and hence the Reynolds I

number Re6_. The Reynolds number R_ is varied at the inflow boundary de-

pending on the level of heating so that the physical location at the left boundary I

remains the same. The parameter A0 is now nondimensionalized with the temper- I
ature difference between the wall and the freestream, since a surface heater strip

is not present. The influence of passive heating on the base flow characteristics I

was shown in detail in Section 6.1 and is not repeated here.

The Fourier modes for the uncontrolled flow are shown in Figure 6.73 I

for the U0 and U1 velocities. Surface representations are shown at time step I
L - 800. The U0 velocity appears similar in shape to the results of Section 6.1.1

for the uncontrolled linear disturbances, but is at a nonlinear amplitude. However, I

!
I
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the [/i velocity dearly ex_bits diferent characteristics. A time invarlant, three--

I dimensional disturbance is now present and is spanwise periodic. This perturbs-

I tion represents a stationary modulation of the base flow and was first observed
in the experiments of K]ebanoff, Tidstrom, and Sargent (1962). This nonperiodic

I term present components and represents a longitudinal vortex system
is in all flow

in the VI and WI mean velocities. The three-dlmensional mean component creates

I the peak-valley structure and the effect of passive heating on this component is

I discussed further. The influence of uniform passive control on the Fourier mod_
for AT - 15°F is shown in Figure 6.74 for the U0 and U I velocities. The influence

I heating Both the two-dimenslonal and three-dimensional
of uniform is evident.

components are reduced in amplitude downstream. The Fourier modes for the $0

I and el temperatures are also shown in Figure 6.74. Since the disturbances are

I created at a suction and blowing strip, the strong temperature perturbations that
existed over the heater strip are not seen here. The temperature fluctuations follow

I same growth as Uk velocity perturbations.
the characteristics downstream the

To more closely examine the influence of uniform passive heating on

I the fundamental breakdown process, amplitude and phase profiles are shown in

I Figure 6.75 for each case of Table 6.5. The comparison is made at z = 10.65
(n __ 389). The amplitude and phase dlstributions are shown for both the funda-

I frequency FI = 0.588 and for the first harmonic F2 = 2 FI for both the
mental

two-dimensional and three-dimensional wave components. The reduction in am-

I plitude is clearly evident for both frequencies. The U0 velocity with fundamental

I frequency FI shows similar trends as seen in the linear passive control results. The
shapes of the amplitude profiles are not strongly affected and the phase jumps te-

l approximately the same location. However, the case of AT = 15°F does
main in

!
II II |
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not appear to have as strong an influeuce as might be expected for this high tem-
im

perature when compared with the _ - 8°F case. For the first harmonic F2 of l

the U0 velocity shown in Figure 6.75b, the amplitude level shows an even stronger |
reduction since the nonlinear amplitude of the fundamental has beer. reduced. In

addition, the amplitude profiles show a slight change in shape, as a second maxi- i
g

mum appears. The phases also show changes, but it is mentioned that the phases

increasingly dL_cult to compute for lower amplitude waves. In Figure I

i

become

6.75c, the influence of uniform heating on the UI velocity for the fundamental i

frequency FI is shown. Here the influence of uniform heating is more significant, i

The amplitudes axe more strongly reduced than for the two--dimensional compo- •

nent. The amplitude and phase profiles for the first harmonic of the UI velocity

are shown in Figure 6.75d and the reduction in amplitude is again evident. The i

location of the maximum is also shifted for AT = 15°F. Finally, Figure 6.75e

shows the three-dimensional mean component that has already been discussed. I

This component is on the same order of magnitude as the three-dimensional com- e

ponent with the fundamental frequency for the uncontrolled case. The shape is i

slightly different. However, the most dramatic impact is that the time invariant i
I

component is not significantly reduced with passive heating when compared with

Figure 6.75c. I

To explore the behavior of the spanwise periodic mean flow component
i

further, the UI mean component is plotted versus the streamwise direction z in I

Figure &76a. The amplitudes are at the maximum of the UI mean velocity. This i
mean component develops rapidly downstream and shows a significant increase in

growth rate towards the end of the periodic computational domain for the uncon-

trolled flow. However, for the heated boundary layer, this mean component begins

to decrease near the end of the solution domain. Thus the passive heating is also i

!
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reducing the strength of the longitudinal vortex system. Figure 6.76b and 6.76c

I show the streamwise amplitude growth for the U0 and UI velocities, respectively,

I for the fundamental frequency. The two-dimensional amplitude shows a growth
downstream for the uncontrolled case, but is clearly damped with passive heating

I applied. The three-dimensional amplitude without passive control applied shows a

reduction in growth downstream and then a very sharp increase in the growth rate

I as secondary instability strongly sets in. A three-dimensional solution of the Orr-

Sommerfeld equation shows that a linear amplitude wave should decay over the

I Reynolds number region considered here. The strong three-dlmensional growth

I rate at the end of the solution domain is thus attributed to nonlinear effects. With
passive heating applied, the three-dimensional a_plltude levels and growth rates

I are reduced. Although the growth rates increase towards the end of the solution

domain, they are at a much smaller level than without control applied.

I One of the most important questions, in observiv_ the influence of pas-

sive heating on the secondary instability process, is whether the three-dimensional

I growth rates are influenced more directly through the heated base flow or directly

I through the reduction in the two-dlmen_ional nonlinear amplitudes. Both factors
obviously have some influence. It was demonstrated in the linear passive control

I that surface alters both the two-dimensionalinvestigations heating dramatically

and the three-dimensional growth rates. Herbert (1984) has show_ that the three-

I dimensional growth rate is strongly influenced by the two-dimensional amplitude

i level in his secondary instability theory, i.e., as the two-dimensional amplitude
level increases, the three-dimensional growth rate increases. Below a certain

I threshold amplitude, secondary instability does not set in. Since it is difficult
to separate the two factors in the passive control investigations, this question is

I delayed until the active control results are presented. In active control, the base

!
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flow does not change, except locally over the heater strip, so a comparison will be

made between the passive and active control results, i

To complete the discussion of the effects of passive control on the early

stages of fundamental breakdown, contours of several flow components are shown i

in different planes in the three-dimensional flow feld. First, contours are shown

in Figure &77 for the disturbed flow in the z--y plane at the peak position in the

spanwise direction and at time step/; -- 800. The uncontrolled flow is compared l
i

with the flow field resulting with AT = 15*F surface heating applied. The contour

levels are !:he same for both cases so that easy comparison can be made. For the i

components u, _, _, and T, the peak plane is at z = 0, while the peak plane is at

z - _=/4 for the three components w, w=, my. The negative contours are denoted i

by the dashed lines, wlnle the positive contours are solid. For the uncontrolled l

flow, the growth in the streamwise direction z is evident in each ilow component.

For the purely three--dlmensional components w, _¢_, and _y a reduction in growth l

near r_ = 300 (or ._ _- 10.1) is observable. This is in agreement with Figure 6.76c
i

for the U'I velocity. The passively controlled flow shows a reduction in all flow D

components downstream. In particular, the increase in the perturbations away

from the wall does not occur with the uniformly heated wall. i

The spanwise structure is of course periodic. The flow field looking down
i

at the plate in the z-z plane is shown in Figure 6.78 for the w= vorticity. Both the

!uncontrolled flow and the AT = 15*F passively heated flow are shown at m = 6

(or ?/= 3.186) at time step L = 800, which is _ 'he maximum of the w= vorticity in
In

the normal direction. Two spanwise wavelengths are shown. The periodic nature l

of the flow is both directions is noted. In addition, the decay and then strong I

amplification for the uncontrolled flow is seen. For the passively controlled flow,

the reduction in the amplitude growth downstream is observable.

!
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The final plane to consider is the y--z plane for a single z location. The

l three disturbance vorticity components are shown in Figure 6.79 at _ = 447 (or

z = 11.0). This location is near a maximum in the streamwise direction at time

l step L = 800. Both the AT = 15°F uniformly heated case and the uncontrolled

l case are shown. Again, two spanwise wavelengths are displayed. The structures
are si&,nf6cantly reduced with passive control applied. Thus, passive heating ap-

l plied at the early stages of the fundamental breakdown process shows a si_i_cant

stabilizing influence.

l
6.3.2 Passive Control of the Subharmonic Breakdown Process

l Passive control of the stage,red peak-valley breakdown process is now

shown and compared with passive control of the fundamental breakdown process.

l The parameters used in the numerical calculations of s_bhannonic breakdown are

as follows:

l
F2D -- 1.24 (_2D -- 12.4)

I F,D = 0.62 (_SD = 6.2)

l a.i,= 17.0
a._ = 17.0

l 7 = 32.47

l K=2
Az = 6.1600x 10-_

l A 9 = 3.3151× 10-I

At = 5.0671x I0-s

l evo= 1.45x 10-s

l _v_= 6.00x I0-6

!
II _.-
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The parameters are chosen to simulate the laboratory experiments of Kachanov

(1984) as closely as possible. The two--dimensional fundamental I
and Levr.henko

frequency is twice the three--dimensional fundamental frequency. The step size in

the streamwise direction Az is chosen so that there are approximately 30 points per

two--dimensional streamwise wavelength and 60 grid points per three-dimensional i
u

streamwise disturbance wavelensth. The normal step size Ay is determined so that

normal direction spans ten boundary layer displacement thicknesses at the in- I
the

flow boundary and approxim_,tely 4.5 boundary l_yer displacement thicknesses

at the outflow boundary. There are 61 grid points in the normal direction and R

901 points in the streamwise direction. The streamwise domain contains approx- •
A

imately 30 two-dix_ensional disturbance _avelengths and 15 three--dimensional

w_velengths. The right boundary is initially positioned at zs_ - 301 I
disturbance

and moves at a speed Vs - 0_8. The time disc_etization At is chosen so that there

are 60 tim_ steps per two-dimensional disturbance period and 120 time steps per

three--dimenslonal disturbance period. Five disturbance periods of the subhar- I
I

mon/c wave component (until L _= 600) are computed. As for the fundamental

case, tests have shown that the parameter A" - 2 is su_cient to resolve I

i

breakdown

the spanwise flow in the periodic computational region.

As in the previous section, the _Jsturbances are introduced through a e

discrete suction and blowing strip _t the wall. The same wall boundary conditions I

are used to create the disturbance waves as for fundamental breakdown and are

given by Equation 6.11. The suction and blowing strip is located between zss_ = I

50 and zs_ = 1i0 and covers one three--dimensional wavelengt_ The disturbance

amplitudes ev0 and ev_ are chosen to match the velocity perturbations observed

in the experiments. •
|

!
I
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For the p: .ire control of subharmonic breakdown, the following three

I cases are con_dered:

I m
T,bh 6.8 Parameters for Uniform Passive Control

Cases of Subharmonic Breakdown

| Re_, T. - Too _'w- _'oo ,4
• Cat z0) (°F) (°C)

650 0.0 0.000 0.0

I 4.444 4.44414.444
629 8.0

812 1.5.0 8.332 j 8.332/8.332

!
Again the Reynolds number Re_x at the. inflow boundary is varied so that the

I physical location at the left boundary remains conszant. The three analOgOUSs_._ue

c_.ses that were simulated in the passive control of fundamental breakdown are

I simulated here.

Surface representations of the Fourier modes for the uncontrolled flow are

I shown in Figure 6.80 for the [Toand Ux vdodties. The Uo velocity for the subhar-

i monic breakdown appears similar to the U0 velocity for fundamental breakdown.
The U1 velocity has diffezent characteristics for the subharmonic breakdown. The

I increased growth towards the end of the domain is similar when compared with
Figure 6.73. However, the stationary modulation of the ba_e flow that was present

I fundamental breakdown simulatien is not present here. Subharmonic modes
in the

do not have a nonperiodic component a_,d hence no ]ongitudinal voz_ex system.

I The three-dimensional streamwise wavelength is also seen to be appzoximately

i twice the two-dimensional streamwise wavelength (_==v = 2 _==o)" The _nfluenceof uniform passive heating on the Fourier modes for the U0 and U, velocities for

I AT = 15°F ;s shown in Figure 6.8_1. The effect of uniform passive controi on
the flow is clearly seen. Both the two-dimensional and three-dimensionaJ compo-

I nents show a reduction in amplitude and downstream. The _'ourierde,;ayingare

!
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modes for the e0 and O1 temperature components are also s_Iown in Figure 6.81.

These temperature fluctuations have _imilar groscth characteristics as the velocity I

perturbations.

The influence of uniform passive heating on the ampl;.tude and phase I

profiles for the subharmonic breakdowu process is shown in Figure 6.82 for each I

case of Taole 6.6. Comparison is made at z = 3.0 (n __ 255). The amplitude and

p_ase profiles for the fundamental frequency and the first harmonic are shown for I
1

both the two-dimensional and tb_ee--dimensional wave components. The U0 ve-

locity with fundamental frequency Ft = F2D = 1.24 is _ho_ n in Figure 6.82a and I

shows similar trends as seen in the control of fundamental breakdown. However,
I

the passive heating reduces the amplitude levels by ,, slightly high_,r level. The I

subharmonic breakdown is at a different frequency and in a different Reynolds I

number range than the fundamental br-,akdown simulations so the stability char-

acter:_4ics of the flow are different. The first harmonic F2 -- 2 F1 of the U0 I
I

velocity is shown, Figure 6.82b. As for the fundamental breakdown cases, the

amp_it_Ide level shows an even stronger reduction than the fundamental fr,quency. I

I

The change in shape wi_h heating is ,-,gain noted. The influence of t,niform pas-

sive he_ting on _he UI velocity for the three-dimensional fundamental frequency I

/I/2 = FsD = ½FI is _hown in Figure &82c. As seen in the control of fun- I
I

damental br_.akdown, the three-dimensional amplitudes are reduced by a larger

percentage than the two-dimensional components The shif_ of the maximum I

and _he appearance of a second maximum is observed. The phase profiles also

have _light changes, but again the phase is difficult to compute for low amplitude I

waves, Finally, the first harmo_c of the U1 velocity is shown in Figure 6.82d for

the frequency F3/2 = 3 F3D = _ F1. The first harmonic of the three-dimensional I

UI velocity has nearly died out. I
I

!
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The amplitude growth downstream for the subharmonic bre_ vn is

I shown in Figure 6.83 for both the [.Toand Ux velocities for the fundamental two--

dimensional frequency and the fundamental three-dimensional _etluency. The

I amplitude is plotted at the maximum value in the normal direction. The two--

I dimensional growth is again simi]: to that observed in the fundamental breakdown
simulations. With uniform heating applied, the disturbances axe damped down-

I stream. The three-dimensional growth rates ._lso similar to the fundamental

breakdown process. Without control _pplied, the amplitudes decay sl:_htly and

I then a strong increase in growth rate appears. As for the fundamental breakdown

case, the three-dlmensional Orr-Sommerfeld equation shows that linear three-

I dimensional disturbances are stable for the Reynolds nu_ "-eraconsidered. There-

I fore, the increased three-dimensional growth is attributed to the occlu'rence of
secondary instability. With passive heating employed, the three-dirr_=nsional am-

I plitude levels and growth rates reduced. The fact thatsignificantlyaxe passive

control of subhsxmonic breakdown appears slightly more effective when compared

I with fundamental breakdown is most likely due to the lower amplitude levels

i present in these early stages of subhaxmonic breakdown.
Thus, as was seen for f,mdamental breakdown, passive heating appears

I effective in reducing the high three--dimensional growth rates associated with tran-

sition. The question again arises as to whethe.," the three-dimensional growth

I rates ax," ,re strong/y influenced by the heated base flow or the redvction in

two-dime_,olonal amplitudes. This question _s once again delayed until the next

I section on active control of secondary instability.

I The physical flow field is now shown in s similar fashion as in the previous
section. The disturbed flow in the z-y plane at the peak position in the spanwise

I direction is shown at time step L = 600 in Figure 6.83. Contours are showu with

!
III

1989012697-181



!
!

negative contours denoted by dashed lines and positive contours by solid lines.
R

The location of the peak plane for each flow component is the same as in Section I

6.3.1. Comparison is shown between the uncontrolled flow field AT = 0°F and the

uniformly heated flow A_ = 150F. The contour levels are held constant for each

component so that comparison can be made. The s_rong growth of the flow fidd I

downstream is apparent in all flow components. The reduction in growth before

the sharp increase is observable in the purely three-dimensionai flow components. I

Comparison between the uncontrolled and passively controlled flow reveal8 a sig-

nificant reduction downstream for the heated flow. In fact, the three-dimensional I

components are dying out. Also observable in these contour plots is the different

streamwise wavelengths for the purely three-dimensional flow components. The

three-dimensional components of _, _, _azand T are overshadowed by the large

two-dlmensional amplitude levels. For the z-z and y-z planes, the influence of aa

passive heating on the flow field for this early stage of subharmonic breakdown i

appears very similar to the fundamental breakdown plots and are not shown hear

for the sake of brevity.

6.4 Active Control of Secondary Instability I

TL_ effectiveness of passive heating to control the early stages of the

secondary instabillty process appears very promising. The amplitude levels and

rates are strongly reduced. As in the control of linear amplitude distur- Igrowth

bances, active heating can also be an effective and more efllcient means of reducing IR

the amplitude levels of the flow. Active control of the early stages of t_e secondary I

instability process is demonstrated in this section. Control of only the fundamental I
B

breakdown process is simulated since the influence of passive heating was shown to

be very similar for both the fundamental and subharmonic secondary instability B

!
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processes. The fundamental breakdown procesa poses the more difficult case due

I to the higher amplitudes that are present in the flow.

i The same parameters presented in Section 6.3.1 for the passive controlsimulations are used for the active control simulations, except where noted below.

I The disturbances are again introduced into the- flo,r using the suction and blowing
strip. In addition to this suction and blowing strip, a surface heater strip is

I located downstream- The arrangement is similar to that shown in Figure 6.67,

but the first heater strip depicted in this figure is now a suction and blowing slot.

I A downstream sensor again monitors the spanwise wall vort,dty (or wall shear

stress). The phase relationship between the actuator and sensor for controlling

I the secondary instability process is found using a transfer parameter. The wall

I boundary conditions for the heater strip are as follows
for the undisturbed flow:

I Ol _o,,,,o -- sin(_,.) (6.12a)

I and for the disturbed flow:

O_o,,.,o = sin(_.)[1 + eeo sin(_2Dt, + A¢o)] (6.12b)

I @i,,_,0 = ee, sin(_.)sin(_sotz + AS, ) (6.12c)

E where

ZHE, -- ZHBt

| and

I zHB, _<z_ _<zHE, •

i The functional relationship over the heater strip is now sin(_,,)instead of sin2(_,).
As previously alluded to, some additional difficulties are e-countered in attempt-

I ing active control of secondary instability. For active control to be effective, the

!
I
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amplitude levels created at the heater strip must be much larger than for the linear

control simulatious. These higher amplitude levels are difficult to create with a I

singh heater strip, so the sin(_,) distribution is used to allow for more heat input

that the sin2(_,) distribution. I

Two active control cases are considered. In the first case, control of only I
the two-dimensional wave is attempted, in the second case, active contro_ of only

the three-dimensional wave component is considered. A comparison is then made I

of the effectiveness of a two-_limeusional control input versus a three-dimeusional

control input. The following table summarizes the control parameters for the two I

cases: I

Table 6.7 Parameters for Active Control of

of Fundamental Breakdown I

400 ee, zRB, zHB, AqhD AChz> AChD A_sz> zs

(tad) (rad) (deg) (deg) I
30/31 0 164 192 3.5563 -- 203.8° -- 220

0 I0 / 11 150 182 -- 8.1781 -- 354.0 ° 219

!
The first row represeuts the two-dimensional control case and the second row

represents the three-dimensional control case. For the two-dimensional case, the I

two--dimensional amplitude input 400 represents a temperature input of 30°C I
heating above the frees_ream with a steady state heating of 31°C. The heater

strip covers about one half of the two-dlmensional streamwise wavelength. For I

the three dimensional contro _. case, the three-dimensional amplitude input co,

represents a 10°C heating above the freestream temperature with a steady state I

overheat of 11° C. The three-dimensional heater strip covers one-half of the three- I
dimensional streamwise wavelength. The width of the heater strip is chosen based

on the receptivity _tudy of Section _.2.1. S_veral tests were made to determine an I

I
I II
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appropriate heating level. The level of heating appears high, but the heater strip

I is not in a region of strong amplification or a lower heat input would have been suf-

ficient. The three-dimensional amplitude level that is generated from the heater

I strip closely matches the amplitude level of :he uncontrolled three-dimensional

I flow for fundamental breakdown. The two-dimensional heat input is not suit-
dent to create the nonlinear amplitude level existing in the flow. The amplitude

I generated from the two-dimen_ional heater strip is about one half as large as the

uncontrolled amplitude level. Also, it was found in test calculations that increased

I heat input did not result in the same increase in disturbance amplitudes. At higher

I temperatures, the viscosity variatk.-t with temperatu_'e is not as strong, as seen
from Figure 6_2. The higher levels of heating become less effective. However, ad-

I ditional heater strips c:_d be used to bring down the two-dimensional _,mplitude
levels even further.

I In Equation (6.13), the phase adjustment is different in form when com-

pared with Equation (6.9) for the linear active control investigations. For these
nonlinear simulations, a transfer parameter is used that is based on a method to

I determine transfer fun. tions that Dittrich (1988) has successfully applied to active

control of two-dimensional wave packet disturbances. Although the same method

I described in Section 6.2.2 could be applied here, the phase is undergoing rapid

i adjustments downstream, making the previous metkod less reliable. The transfer
parameter is for a single frequency wave and is now described. First, a numerical

I simulation run is made with the heater strip only and without the suction and
blowing strip. The transfer parameter is determined from this run and is defined

I as follows:

_iz'(zs'_- O) (6.14)

I TP = T_(zns_, V - O)

!
| III I II
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I
where flz=k(zs , Z/- 0) is the complex amplitude of the spanwise wall vorticity at

thelocationofthesen,orand_(-.so, y=0)isthecomplexampUtudeofthe |
wall temperature at the center of the heater strip. This transfer parameter is linear

and represents the downstream response of the spanwise wall vorticity to the local I

temperature perturbations. To determine the appropriate phase adjustments that

should be made for active control, the spanwise vorticity at the sensor is monitored I

with just the disturbances emanating from the suction and blowing strip. The I
complex amplitude for this quantity fl°,(zs, y -- 0) is then used to formulate the

correct temperature input for the heater strip: I

_'(=xs_, _,,= O) = fl°='(=s' Y = O) (6.15)
ir'p

The minus sign denotes a 180 ° phase adjustment necessary for cancellation. From

this complex temperature, amplitude and phase adjustments to the heater strip I

can then be determined. The amplitude lecels, however, are not a_ijusted in the I
active control simulations because unreasonably high temperature inputs would

be required. The phases shown in Table 6.7 are determined from Equation 6.15. I

The phase is calculated from

!
,_, = t,=-_\_(_,_) . (6.16)

The procedure for determining the transfer parameter is carried out for both the I

two--dimensional and three-dimensional heater strips. Results of both simulations I
are now shown.

First, the Fourier modes resulting from the two--dimensional active con- I

trol investigations of the fundamental breakdown process are shown in Figure 6.85.

Both the U0 and UI velocities and O0 and O1 temperature fluctuations are shown I

in surfa_.e representations at time step L = 800. Figure 6.86 shows the same I

!
• I

1989012697-186



!
!
I 189

flow quantities for the three-dlm¢,Isional active c:mtrol numerical simulations. In

I comparing the results with the uncontrolled flow shown in Figure 6.'.'3 and the

passively controUed flow of Figure 6.74, several observations can be made. First,

I the two-dimensional control input causes a reduction downstream in amplitudes of

I _he two--dimensional U0 vdocity. The three--..-llmensional control input appears not
to have a significant impact on t|:,.- U0 velocity. Secondly, in com_arlson with the

I uncontloUed UI velocity, both the two-dimensional and three-dimensional heat

inputs result in a reduction in the r71 velocities. The presence of the spazr_se pe-

I _iodlc stationary modulation is again seen. In Figure 6.85, the large temperature

fluctuations over the heater strip for 90 is seen for the two-dimensional active con-

l trol case. The _empera_,ure distribution for O1 is similar to that observed in the

I passive control simulations. These three-dimensional temperature perturbations
have been created through nonlinear interactions, but are one order of magnitude

I smaller than those observed in the passive control simulations. Figure 6.86 shows a

similar pict,,_'e for the three--dimensional heat input. The t_ree--dimensional fera-

l perature O1 is very large over the heater strip. The O0 dlstarbance temperature

again appears similar to the 00 temperature of the passive control investigations,

I but is one order of magnitude sm_l]er.

I To more closely examine the effect of active control on the fundamental

breakdown process, amlqitu.de profiles are shown in Figure 6.87 for both active

I control cases, as well as the uncontrolled case presented in Section 6.3.1. Com-

parison is made at z -- 10.65 (n _- 389). Both the amplitude at the fundamental

I frequency FI = 0.588 and th_ first harmonic F_ = 2 FI, are shown for both the

l two--_Umensional and thzee-dimensional wave components. The first observation
is that the U0 velocity with both fundamental f1_quency FI and the first h,a_nonic

I are reduced even for the three--dimensional active control investigation. Although

!
.... I ,m L I
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only a three-_mensional temperature perturbation has been input at +.he heater

for the thre_ensional active control case, a steady state component has Istrip

also been i_Iroduced. This steady state component remained very local to the
m

heater strip in the linear active control investigations due to the lower heating m

levels required. The steady state overheat in the nonlinear investigations is larger m
i

and convects further downstream. An analysis of the mean _ velocity has re-

vealed fuller velocity profiles over the heater strip and downstream of the heater I

strip. This fuller profile is more stable. Therefore, the two-dlmensionai ampli-
m

tude is also slightly controlled with three--dimensional active control appUed. This m

provides an additional enhancement in stability. Also, it is noted that the two- m

dimensional active heating has caused a significant reduction in amplitude level of

both the fundamental frequency and the fLrst harmonic. The important aspect to I

consider is the influence of active control on the three--dimensional components.
i

Considering Figure 6.8Tc and 6.87d, the three-dimensional amplitude levelb for m

both the fundamental frequeucy and the first harmonic are signii_cantly reduced m

with active control applied. The purely three-dimensional control input shows a

reduction than two-dimensional control. The three-dimensional IslJghtly stronger

mean component for the UI velocity is shown in Figure 6.87e and shows an almost
sm

ic_entical reduction for both control ca_es, m

A better picture of the influence of a_tive c_._rol on the fundamental m
g

breakdown process can be obtained by looking at the ampUtude versus the stream-

wise direction z. This amplitude growth for the Uk velocities at the maximum I

value in the normal direction are shown in Figure 6.88 for the fundamental fre-
m

quency F] for both active control cases. A significant reduction in amplitude and m

a _:arly neutral growth rate downstream of the heater strip are seen. For the m
|

!
m l
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three-dlmensional control cases, the [Tovelocity shows the slight reduction in sm-

I downstream, a positive growth rate prevails. In contrast, passive
plitude but stin

control results in decaying amplitudes downstream as shown in Figure 6.76. The

I three--dlmensional downstream growth for the fundamental frequency shows the

I best overall picture of the influence of the two active control cases. First, the
three--dimensional active control input results in an immediate suppression of the

I UI velocity. In the linear active control results, the immediate attenuation of the
waves was also observed. The three-dimensional amplitude level is si_ficautly

I enough to delay the strong growth of the secondary instabiUty process.
reduced

For the _.wo-dlmensional control case, the UI velocity is not significantly reduced

I until about z = 10.2. The tv.,.o--dimensiona! amplitude level has been reduced

i enough to delay the large growth of the uncontrolled case. However, at the end of
the integration domain, the U1 velocity is beginning to show a higher growth rate

I for the ",wo--dimensionai active control case than is seen for the three-dimensional

active control case or in the passive control simulations.

I Now an attempt is made to answer the question posed in the previous

section, i.e., are the three-dimensional growth rates more strongly influenced by

I the heated mean flow in passive control or directly through the reduction in the

i two-dimensional amplitude level. To heuristically answer this question, the three-
dimensional amplification rate is shown if Figure 6.89 versus the two-dimensional

I amplitude at z - 10.65. The amplitude and amplification rate are calculated at

the maximum of the U_ velocities. The uncontrolled case, as well as the two passive

I control cases are shown for the thndamental breakdown simulations. A curve fit

has been drawn through the_ three points. In adaition, the two-dimensional and

I three-dimenslonal active control cas_.s are shown. With a sui_sequent reduction

in two-_mensional amplitude level for each level of passive ,.eating employed,

!
[---- i' i _ - -- .... ,, I
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the three-dimensional growth rates are reduced. However, +,hereappears to be a

diminishing return for the higher heating case of AT = 15°F. Comparison is now I

made to the two-dimensional active control case with the dashed curve fit. For

the two-dimensional active control simulation, the reduction in two-dimensional I

amplitude is due to wave superposition, although a slight reduction is caused I
through the steady state heating over the heater strip. The reduction in the three-

dimensional growth rate is almost as large as for passive heating, but not quite I

the same level o2 reduction is achieved. The difference between the amplification

rate of the two-dimensional active control case and the curve llt for the passive I

control cases is attributed to the more stable mean flow base profile. Thus the

overriding cause for the reduction in three-dimensional growth rates with passive I

heating applied to the nonlinear secondary instability process is the reduction in I
the two-dimensional amplitude and a smaller additional enhancement in stability

is derived directly frem the stabilizing influence of the heated mean flow. I

It is also noted in Figure 6.89 that the three-dimensional active control

case results in a similar reduction in growth rate as for the AT = 8°F passive I

heating case. To make an accurate compa---isonbetween pas_;,- 'and active heating, Ithe heat transferred at the wall must be considered. The hen, , _asfer is calculated

in the same manner as pre'4ously shown for the linear control calculations. The I
same three--dimensional zanplification rates are shown in Figure 6.90 versus the

ht._, input at _.hewall Q as w_re shown in Figure 6.89. For the uncontrolied I

case, no power input is required. Although the AT = 15°F passive heating case

results in the smM]est three-:Limensional amplification rate, it requites almost I

four times as much power as the AT = 8°F passive heating case. The power I
reqni_ed for the three-dimensional active control is slightly smaller than for the

Itwo-dimensional active control case considered hel_. The AT = 8°F passive

I
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heating requirement is nearly the same as the two--dimensional active control heat

I input. However, if additional heater strips are used to further bring down the

two--d_mensional amplitude level, a larger po_er requirement would be necessary.

I Overall, the three-dlmensional active control case appears the most promis;ng

I in terms of reduction in the three-dimensional amplification rate and the sm_U
amount of power required to ac]:__ve this reduction.

I Finally, contours ef the flow component in different planes in the phys-

ical three-dlmensional flow field are shown for the two active control cases. The

I same contour levels and physical locations are chosen as was shown in the passive

control results for fundamental breakdown so that £:nal comparison between the

I two control technit ues can be made. First, Figure 6.91 shows the disturbed flow in

I the z-y plane at the peak position in the spanwise direction at time step L - 800.
Both the two--dimensional sad three-dimensional active control cases are shown.

I In comparing with the reduction in the downstreamFigure 6.77, perturbations for

the components with large two-dlmensional amplitude levels (_,, v, wz, and T) is

I observable for the two--dimensional active control case. These same components

i appear only slightly influenced for the three-dimensional active control case. The
purely three-dlmensional components w, w=, and _ exhibit a significant reduc-

I tion in amplitude level and growth rate for both active control cases. However, the
three-dimensional active control case exhibits a smaller growth r_,te at t_e end of

i the periodic solut'on domain. The large gradients in temperature over the heater

strips are also observable.

I The spanwise structure in tl,e z-z plane is shown in Figure 6.92 for the _

i vorticity. Again the two-dimensional and three-dimensional active control cases
are shown at y - 3.].86 and time step/; = 800. Two spanwlse wavelengths are

I shown. In comparing the resultant flow with Figure 6.78 for the uncontrolled
cas_,

!
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the influence of active control is again obvious. It ;hould be noted here that the I

influence of the heater strip has reached to n _ 455 only a:,d the flow downstream I
of this location is not yet periodic. In comparing with the uncontrolled flow, the

reduction in amplitude level and growth is apparent. I

The last plane to consider is the y-z plane at n = 447. The three _s-

turbance vortidty componenta are shown in Figure 6.93 at L = 800. Both the I

two-dlmensional and three-dimensional active control cases show a significant re- I
duction in strength when compared with the uncontrolled flow shown in Figure

6.79. Once again, the stronger reduction in the purely three-dimensional compo- I
nents _aa and w_ is seen with three-dimensional active control applied, while the

stronger reduction in the two-dimensional flow is seen for _a, with two-dimensional I

active control applied.

I
!
!
!
!
!
!
!
I
!
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CHAPTER 7

i CONCLUSIONS

I
A numerical method has been developed for studying the influence of

I control in the three-dimensional boundary layer. Passive and active methods of

I control using surfa_.eheating techniques have been numerically investigated. Con-
trol of linear amplitude two-dimensional ToUmien-SckLichting wavea and three-

I dimensional oblique waves is achieved with aniform passive heating applied. The

amplitude levels and growth rates are reduced. Nonuniform surface heating has

I been shown to be an even more e_cient means of controlling linear amplitude dis-

turbance wave- The amplitude leve]_ are reduced more with nonu_form surface

I heating than with uniform wall he_+ing However, the effecti-.eness of _ particuiar

I nonuniform temperature distribution was shown to be dependent on the location
of the reference point.

l Comparison of the passive control investigations was made with l_aear

theory, nonparallel theory, and experiments. The agreement with the linear theory
B
m of Lower (1974) _ _a good. The results agreed qualitatively with the nonparal-

I lel theory of Nayfeh and E1-Hady (1980) and Asrar and Nayfeh (1985), bu_ the
growth rat,'s og the nonparallel theory were consistently higher than tl'.- growth

i rates from the numeric.d simulations. However. differences shown to exist
were

between the unheated nonyarallel theory of Nayfeh and El-F.ady (1980) with the

I unheated nonparallel theory of G_.ster (19"r4). The nonparallel theory of Gaster

i (1974) _howed very good agreement with the unheated Navier-Stokes simulations.
Agreeme,_. with the experiments of Str_isar, R,.-shotko, and Prahl _1977) and

I Strazisar and Reshotko (1978) was quite good at a moderate frequency, but the

!
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experimental trends at a higher frequency were not predicted by the numerical

simulations. However, neither the _near theory nor the nonparallel theory pre- I

dieted the experimental trends well at the higher frequency. The calculations

presented here are not considered conclusive enough to disqualify wL-_ous theories. U

More extensive calculations are necessary to provide a thorough compaxison with I
g

the theories.

Numerical simulations of active control of linear amplitude two--dimen- I

sional Tolhnien-Schlichting waves and three-dimensional oblique waves was also
im

shown to be an effective method of control. Localized periodic wall temperature I

perturbations autiphased with the disturbances present in the flow resulted in a |
significant reduction in the amplitude, levels in the flow. The heat input required S

for active control was three times less than that required for passive control with I
am

the same resultant decrease in amplitude level.

A receptivitystudy of a surfaceheaterstripshows thatsmallerhc_,:;er I

stripsaremore receptiveinthattheymaximized thedisturbancelevelsgenerated
am

in the flowfield.Itwas alsoshown thatthe heaterstripgeneratesdisturbance I

waves in lessthan one wavelength.Itwas alsodemonstratedthat the localized •

temperatureperturbationcreatesteeplocMizedgradientsin the spanwisewall

vorticity. I
Controlof the secondaryinstabilityprocessalsoproved to be effective.

Uniformpassiveheatingofboththefundamentaland subharmonicbreakdownpro- I

cessesresultedinreductionsin theamplitudelevelsand growth ratesforboil the

two-dimensionaland three--dimensionalcomponents.The levelofcontrolachieved

was similarforboth breakdown processes.The three--dimensionalgrowth rates

were significantlyreduced and itwas heuristicallydemonstrrLtedthat the m_n

influenceof passiveheatingon the secondaryinstabilityprocessisto reducethe
I

!
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two-dimensional nonlinear amplitudes, which in turn causes a reduction in the

I three-dimensional growth rates. The heated mean flow provides a stabilizing in-

fluence on the three-dimensional growth rates as weLl, but is smaller than the

I influence of the two-dimensional amplitudes levels.

I Finally, numerical simulations of active control of the fundamental break-
down process showed active control to be a viable technique for control at the

I early stages of nonlinear secondary instability. Both two-dimensional and three-

dimensional localized temperature perturbations were used with the three-dimen-

I sional control input providing a more stabilizing influence with a smaller amount

I of heat input required. Due to the high level of heating required to bring down
the two-dimensional nonlinear amplitudes, two-dimensional active control is less

I efficient in terms of power input required. Three-dimensional active control was

also more efficient when compared with passive control of the secondary instability

I process.

I It is felt that future work should focus on several points. First, computa-
tional speed could be improved by using an explicit method so that the nonlinear

I terms do not need to be updated at every iteration step. In addition, the line iter-

ation process, which requires the reduction of the tridiagonal system of equations

I could be vectorized. Also, the method should be programmed pseudospectrally

I for e_ciency when more spanwise modes are used. Radiation conditions at the
downstream boundary should also be explored that inhibit reflections so that a

I smaller computational domain can be employed.

Future work should also focus on simulations of transition control of

I three-dimensional wave packet dist.urbaaces with surface heating instead of the

I monochromatic forcing studied here. The frequency spectrum in natural transition

!
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is broad band and control of wave packets is more realistic of the control required

in natural flow environments, i

The work should also be extended to control the three-dimensional break-

down process further downstream. This would require more spanwise modes and i

necessitate the change to a pseudospectral method. I
Finally, numerical simulations of control by suction and blowing or pres-

sure gradients should be considered. The current numerical algorithm could be i

used to investigate these control processes. These other modes of control could

prove more effective when compared with passive and active control by surface I

heating. A combination of these different control methods could, also lead to the i
most efficient design.

i
I
I
I
I
!
!
!
I
i
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Figure4.3 Spatialdomain and coordinatesystem
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I Figure 4.5 Boundary conditions for the disturbea flow
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I Figure 6.5 Undisturbed flow without control applied, F = 1
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Figure 6.8 Velocity divergence of the undisturbed flow without control applied,

F=I I
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I Figure 6.64 Comparison of recepti_-ity a_ a suction surface hard wall junctionfrom theoretical analy.is of _teinrich, Choudari, and Kerschen (1988).
F(d) is tli¢ receptivity coefticient defined as the ratio between the

I Tollmien-Schlir_.ting amplitude and the input amplitude and d is the
width of the suction blowing strip. The distance from the leading
edge is defin_:d by [, the loc_tion of the neutral stability point is

I defined by l,_,p, and the location of maximum growth is defined by
[ma= gro_t& rate.
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Figure 6.68 Undisturbed temperature distribution for active control simulations I
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I Figure 6.73 UncontroUed disturbed flow for fundamental breakdown, F2D = 0.588,
F_D = 0.588
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Figure 6.74 Disturbed flow for fundamental breakdown witl_ _T = 15°F control I
applied, F2o = 0.588, F._D= 0.588
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Figure 6.75 continued
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I d) 3D streamwise velocity, U1, 2 F_D
Figure 6.75 continued
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Figure 6.77 Comparison of the disturbed flow for fundamental breakdown without

control applied and with uniform passive heating applied at the peak Iplane in the spanwise direction

I
I

1989012697-349



1989012697-350



I

e) spa.nwise velocity, w, z = _z/4 and AT = 0°F I

ZINCR-4..00,10" N VeLocLt_ T-_0

I
_- i

I
m_.

¢3 t .... _ io _o _o _8o _o _oo _6o _o _o
X/OX

f) spanwise velocity, w, z - _z/4 and AT = iS°F i
Figure 6.77 continued

I
I

1989012697-351



!
I 351

i = Z]NCR- 4.00.10 _ RX Vor'f_LcLf_ T.80 0

! o

C:3_

>-

i • ,' ,',",.,'" ;;'-.',,'," ,_','" ," ," ," ., ,;'i"

.-' ..... , ;/" :. ." . ,

i 0 60 120 180 240 300 360 420 480
X/OX

I g) streamwise vorticity, _#, z = _=/4 and z&T - 0°F
ZINCR- 4.00.10 .4 RX VorLLcLtj T-800

I
I o

C3_

>-

!

,.., ,,.,," ..',..;:" ," .', ..., I
i 0 60 120 _80 240 30o 360 4½0 480X/OX

h) streamwise vorticity, _Oz,z = _,/4 and AT _--15°F

i Figure 6.77 continued

!
I

1989012697-352



I
352 I

= Z]NCR-2.00_102 RY VorLLcLLj T-_O0 I

i i li._it lell

|,, ,:, ,,,'.t_ ,,-:,

o 6o _20 _so. 2_o 300 _so 42o 4so

x/ox I
i) normal vorticity, _oy, z = A./4 and A_ = 0OF

ZINCR-2.00.10" RY VortLcLt_ T-_O0 I
° !

XlOX

j) normal vorticity, _y, z = A./4 and AT = 15°F

Figure6.77 continued I

I
I

I

1989012697-353



!
I 353

I Z]NCR= 2.so,;o" RZ VortLcLt_ --_oo

I _-

>-

t l f l i _
• o , "_ i i / J ,

I O 60 ! 20 180 240 _00 360 420 480
x/ox

i k)spanwisevorticity,_,,z = 0 and AT = 0°F
ZINCR-2.S0,I0" RZ VortLcLt_ T-SOO

I _. ,

I

_-

| _-

I p i .' "_. .... z;- o o :_. ,'_._<.-":,, _.;,, -:, .:,
. ° ,- • .. .. .

0 60 ]20 ]80 240 _00 160 420 <BE

x/ox
i

I)spanwisevorticity,_z,z = 0 and AT = 15°F

i Figure6.77continued

I
I

1989012697-354



I
354 i

ZINC,R-1.30.I0 -2 Temper"ot, ur"e T-800 i

_- l
_-

_" a
¢'1 t#-. I • "_ .'- z_x -- o, .

O" _3 120 180 240 300 360 420 480

XlOX i

m) temperature, T, z = Oand A_ = 15°F

FiEure 6.77 continued i

!
!
!
!
!
!
!
!
!

. I liili il

1989012697-355



I
I 355

I ZINCR-1.90,_0' RX VortLcLt9 T-800
;,,.... ',...,, ;,..4 ;',..', ...... ;,'.,'4 .-"':'
l • °_ll I /f %111 Ill %1 I qlll iI1_11 I_I .@..,,,N............... ' "'_ .... ',' I .... ; .... ,Illli_,_110_',,,,Jill/)ll_.....,l_lUl|_,,,,IllIE....litI_,,_liP!l_.'=l

Ii _jf#l I Ii1#1 j I|_ iii II i_1• III I1_ lelll _ •

"1l/_11_,' --111 _1|111__ .:Jllll I|llll_ _._111_1111. 011 Jill" ..(tll IIIllF_' ,_m/Ill/.h,,I
,, I IIIW.,,--JalNIIII_",,2_NIIflllll'. _:TllIIII1'.,,,;ill fill," ,411UIII_,"",-iu_'_'[,,i

I :,.,, p=, :',.-,,, ',,,,,, ,,.,, :.., ,,,.-.,, ,,,.
_" M,:, "'-.,' :;:.':' ",'.',' ;,,-" _i',"" ";:'""

II_,,_#ll._il_f:_',ttlll'_llll_',:,', _tIIII_u_', ",,','11/ilh,:',',""lll l_t_,",._, lll^llmmZ,".__'_lcl

i 111117.%--_ll/_lli_l Illlllllll IHIY'I IIl_UIIIIIrl21 IIiiiii IlL' _0"lll IIr_ "+._.(IOlll_; ;_lllBII

III I1_?_lvl_ ,,,_,ltit_Jl_l_.,.,,,,+_1i+111¢,,J,,hiltII_, ,,,,lit IIr_.'a,,_ll_'Jll_'."_N
IX'"/1_",,'llv_li_..",,,,,ll_\_/l_.,'. ',','it/U_g,.',t'lWIl_,',,"1_UIl[,,,,,',,_lt\\"Jll,_.

i II I II iI IL,,dl/n_&,,_f_lll,,,ShillS:,,,:l_lmb,,
_ 1[,.,_6_11 ! Illlp ,.il IIlP '_ '_IIUilI_,"," ,_llUll_,*,_',,

'".':_l_.",,;_li_J/I]li',':;";_J_. ....;,_nl, ,,_v,,,,,_._y_H_.;,,,.,,.a_,,,_
11%_/11 ii II I • II Ill _JI _._

| = ,o _ ,_o _o _o s6o _6o _o _o
X/I:LX

a) streamwise vorticity, _=, AT -- O°F

I = ZINCR- 1.90,I0"RX VortLcLt_q T-SO0

III. IIII J i

111 I I i I I # iI ii iI ii
il I i- Ill " i I I I !

i ,, ',;.,2, ,'" ..u P I iI I i
n * I i i , i I I

Ii I i # i i I I i I " i ' i I /i

N .i " _ • .oi -o

,'.., ;: ,-
till, /lIlt I_ I I I f I

..... "lip I Jill t i i i i I% it

i Ill. |t ! Ill i " i i I

',, ,'',1, , , , /

__ "'.'"'_'-'' ",.., .. ,,.,

0"o
,, , ',;.1_, ........

ill I I # I i # I t i I t I _ t i I

I ....... " "
,',_ ,', ..... • , , , , , ,

o _o ,_o _o _o s_o s_o _io _o
| x/o_x

b) streamwise vorticity, w=, AT = 15°F

I Figure 6.78 Comparison of the disturbed flow for fundamental breakdown withoutcontrol applied and with uniform passive heating applied at y = 3.186

I
I

I

1989012697-356



I

Z]NCR- 1.20.10" RX VortLcLt_ T-_O0 I
t,O

o !
° I

n IO Z/OZ20 30 40 I

= ZiNCR-1.20.10 ' ,_A VorLucub_ T-800 I

rm o

>--

¢M

I

..........: _, ........... I
o j'3 2'0 3o 4.o

Z/OZ I
b) streamwise vorticity, w,, A_ = 15OF

Figure 6.79 Comparison of the disturbed flow for fundamental breakdown withou*.

control applied and with uniform passive heating applied at z = 11.0 I

I
I

1989012697-357



I
I 357

I = ZINCR= ].00,]0 "2 RT VortLcLt_l T-eO0

I ow_

| _-,

_-

llt_k\\_.__/#/llll,,e, 4_.-_j e. _ • fz'd _-2 "', '_?,'lltl&kk__ "_))))111,,,',,'4'::-_':._ "_...'.'¢ ,.',,,;;,*"_

,,,:-t{,_(#(_,-.# t,_ -:t<_"Z#_'_.-# "-'

I o Io 20 30 qOZIOZ

I c) normal vorticity, _, A_ = O°F

Z]NCR-1.O0,lO "_ RT VortLcLtq T-8oo

I

_-

III

n l'0 20 3'0 _0
ZlOZ

I d) norzr+_ vorticity, w_, A_ = 15OFFigure 6.79 continued

I
I

1989012697-358



o

I l
!

358

ZINCR-1.20,.,10_ RZ Vor'LLcLt_ T-800 |
$

I

__ |

_R-
>,.

_- |

,-_ _ c_--_---__ _ i
° __iv_ ii ii,! !j iii j. _:q,_;f_(,'-,--,';;o-'...'._i i i i1

0 IO 20 30 40 IZ/OZ

e) sgsnwise vorticity, _,, &T = 0°F I

ZINCR- 1.20wlO" R'7 VortLcLL_ T-Boo

' I
_ |

. I
_R-

_ |

_--_ _ _ I

"-:--'-':-"_ .:--------:--:::" ..--.--.-.-_

.?T..._ |l

0 ]o 20 30 qc
Z/OZ

- If) spsawise vorticity, _,, &T = 15°F

Figure 6.79 continued

I
!

• !

1989012697-359



I
I 359

I
a) 2D streamwise velocity, [,To
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b) 3D streamwise velocity, 0"1_

I Figure 6.80 Uncontrolled disturbed flow for subharmonic breakdown, F2D = 1.24,F3D -- 0.62

I
I

I I I

1989012697-360



I
360 |

I

1989012697-361



I
I 361

I
it "

T- 600 k,,t)

I d) 3D temperature, 81
Figure 6.81 continued

I
I

1989012697-362



I
362 i

Ie_J

Z ' I
-_. _ OTl 0 OEG _" I I

- i
,s |

_ _ I
o zo 2o 36 4o s6 6o lTlOT

-- !
LEGENO

OT- 00EG r I
, OT- 80EG F"
N ..............

• !E OT-]50EG r

_'_ IX .-

l
' /--_,_ ...............

I .....

C_

.- I
I J

0 _0 _ _6 _6 _l 0 _0

TIOT I

a) 2D streamwise velocity, Uo, F2D,

Figure 6.82 Amplitude and phase comparison at z = 3.0 for subharmonic break- i
down with uniform passive control applied

!
I

1989012697-363



I b) 2D streamwise velocity, U0, 2F2D
FiTtre 6.82 continued

I
I

1989012697-364



I

I

1989012697-365



I

I 365

I :Oo

LEGEND II °-_-- A DT- o OEGF

I _ '/ .oT-._.OEG__- OT-]5OEG F"

2 \ ..................

I °_- \_
c:: .. .."'""-. _ ,_

I I_I ," " ": ° *''-- --I--'_'I III II .......... I

o _o 2'0 3_ _'o so 6o
Y/OY

I :
,4

" ..,,, o 0" LEGEND

I ', i .' .T"

"" l:"_:: DT- 0 OEGF
, , ! DT- 8 OEG F

I N i .............',, _ OT- ]5 DEG F......... o. .......

X I_" I

I ,, , •...........r"........ ,.-"'L.'........

I "I ,'q" _ I t
I s

I i II i

I o _o 20 _o 4'o s'o _oY,/OY

I d) 3D stresmwise velocity, UI, _ F__D
Figure 6.82 continued

I
I

1989012697-366



I I
I

366

o

LEGENO I
=-, o'r- 00E6 F"

= |__ _ OT I 80E6 r

x DT-15 OEGF"0

-° Io-

I

° !

° I.4 1.8 2'.2 2'.S 3'.0 ;.4
X

a) 2D streamwise velocity, Uo, F2/) I

_ ,

,= LEGEND I
_ oT-oOEGr_ /
_ o_-_o_ / l__- "OT:i5OCGr....0

- iN ,

_..-
I

° I
= . |.'I 1.8 2.2 2.6 3.0 Z.4

X

b) 3D streamwise velocity, UI, F_z) IFigure 6.83 Influence of uniform passive control on the amplitude growth for sub-
harmonic breakdown

I
I

I I

1989012697-367



I
I

367

I Z]NCR- 2.00_10 _ U VeLocLt_ T-6CO

I
,1 , i
s , ,

. i 1 I i

i " " i

I i I I

I " '' ''l ' '
_ . ' f 1 i t ii

', , , ,
L

i I I : ,
i t i i

I ' " " _; i

i I .j
.i

i ,,.,; ; ....,,,.,,,,:,,,,I:,,,,,,:,llf_l.......:t/f_},,:,,:.... ,'::_ln,
I i It Il i iII i 1_ _| ii I • I ii I II

[ k ]W,,',,.,,,"_Wl",.,".%Jll',",',"_k\_'lf_,'_,,'%\_lb,'.,"_\kJl?¢_-,
-.7_,,,',.-->,__j _-,,,,,.,=-,._,,:.-.,,,-_,,.:,,.,,_, ...,,,,,-._,,-..-. ;_.(;,_'_

I 20 180 240 300
0 60 1

x/Ox

a) streamwise velocity, _, z -- 0 and A_ = O°F

I ZINCR- 2.oo_,_o" U VeLocLt..q T-600

I o

' * 1o
r-'_ ,

| ' ,

'"'" '.... "...... 'I ,','; " : i '
"'"":..... '" "': ' ',i . ,.,,,....... ...... . ,,. : ,

X/OX

b) streamwise velocity, ,_, z = 0 and A_ = 15°F
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APPENDIX A I

SIMILARITY SOLUTION OF THE FLAT PLATE BOUNDARY LAYER I
WITH UNIFORM WALL HEATING

I
A similarity solution is one in which the velocity profiles at all streamwise

z locations are geometrically similar and differ only by a multiplying factor, i.e., I

_(_,_) = f[_. g(_)] where the normal coordinate is scaled by I? = _. g(_). Then I
=/(_/). The bars again denote dimensional qulmtaties. The partial differential

equation is reduced to an ordinary dif[erential equation. I
The similarity solution for a heated boundary layer with variable viscosity

is used in this work. The method for obtaining this similarity solution is now I

presented. The two dimensional boundary layer equations, includin 8 the viscosity

variation with temperature, are I

_+_=o (A.i)

0_ V__ __ @'_6_ (A.2)

_+ _ =_+ _ |

_,_ + _]_ I _' (A.3)_ = __:,_ " I
These equations are the steady state boundary layer equations for a fiat plate.

The same assumptions that were made in Chapter 3 are made here in regards to I

neslecting buoyancy, viscous dissipation, and all variable fluid properties except

viscosity, i

The similarity variable I? and a stream function _pare defined as follows:

I
_ ___ (A.4)

I
_(_,_)=V/_,,V',,_/(_) (A.S)

I
!
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I where f is an unknown ction of _7. Expressions for the velocitites can then be

derived from the definition of the stream function:

| _ _ _ -,,,
= "_ -- ool tQ) (A.6)

"= -_ = _V--_ L_st,Tj-/(_)]• (A.t)

I The vortidty _, is also derived from the stream function as follows:

I _ _

_/-_:'=r ,, _ }

i The primes in the above equations denote differentiation with respect to 7. Intro-
ducing definitions (A.4), (A.6), and (A.7) into equations (A.2) and (A.3) yields

I the following two nonlinear ordinary differential equations for f and T:

_(_) "'7 =_)f"(_) +_SC_)f'(_)+_-:--s( ) o CA.9)

T'07) + -_f07)T'(_/) = O. (A.10)

I The temperature and viscosity in the fiat plate also satisfy the similaxity

I conditions and can be rewritten in nondlmensional form as

HCf)= _'(z'_)- _® (A.11)

I _,,-T=
v(r/)= _(_'Y) (A.12)

I Introducing the nondimensional temperature and viscosity into Equations (A.9)

I sad (A.10) yields the following two nonlinearly coupled equations:

I u(_7)f'"07)+ lf(_7)f"(r/)+uI(rl)f'(17)= 0 (A.13)

H"(_7)+ _.fO7)H'(_7)= 0. (A.14)

!
I

il I
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The empirical relationship given in Chapter 3 for the viscosity is used in the I
calculation here. The viscosity derivative vl(_) is rewritten as

!
dv _, (A.ZS)_'(_)= _--_B.

!
The boundary conditions for the momentum equations are

f(0) = 0 (A.Z6a) |

J'(0) =0 (A.16b) I

f(oo)- I (A.16c)

!
and the boundary conditions for the energy equation axe

!
_z(0)= t (A.tTa)

lit(co) = 0. (A.17b) I

These boundary conditionsfollowthosegivenin Chapter4 foruniformwallheat- I

ing.

Equations(A.13)and (A.14)arenumericallyintegratedusingthefourth I

order Runge--Kuttashootingmethod. Sincethe two equationsaxe noniJneaxly I
coupledthrough the viscositydependence on temperature,the iterationof the

equationsrequiredforthe initialvalueshootingapproach iscombined with the I
iterationrequireddue to the coupling.Once/(rl) and //(I/)axe obtained,the

velocities _(_,_), $(_,_), the vorticity _.(_,_), and the temperature T(_,_) are I

determinedfrom Equations(A.6),(A.7),(A.8),and (A.11). I

!
!

!
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I APPENDIX B

I SOLUTION OF THE THREE-DIMENSIONAL

ORR-SOMMERFELD EQUATION

I
i The Orr-Sommerfeld equation governs the linear stability of a viscous

fluid with mean velocity U(y-'). The three-dimensional Orr-Sommerfeld equation

I was shown in Chapter 1 and is repeated here for convenience:

i [9''(y-)- 2a'8"(y-')+ a48(y-)] (B.1)

where

I The primes denote differentiation with respect to _. This three-dimensional Orr-

Sommerfeld equation relates the stability of three-dlmensional disturbances in the

I form of oblique waves:

_(_,_, _, t') = _(_e _(a"+_'-_t) (B.2)

I where the prime here denotes a disturbance quantity. The three-dimensional Orr-

Sommeffeld equation reduces to the two-dimensional Orr-Sommerfeld equation

I for _ = 0. The dimensionless variables in (B.1) and (B.2) are denoted by the

I superscript "-" so that confusion can be avoided in comparing with the scaling
used in the previous chapters. The nondimensionalization is defined as follows:

5=_-61' 61

!
I
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T= _= O= _, _ I
"_'= '

]7=_'l
Re6, = _-=---. (B.3a_ m

VO O

The length scale _I "s the boundary layer displacement thickness of the velocity II

pro/lie U(_).

The Orr-Sommerfeld equation is an eigenvalue problem whose eisenvalue I

is either _ or/_, depending on spatial or temporal stability theory. A discussion of

theory was given in Chapter 1. Spatial stability theory is considered here, I
linear

where _ is a purely real constant and the solution of Equation (B.1) yields the

complex eigenvalue _ = _,, + i _ and the complex eigenlunction _(y-'). The real I

part _ is tile wave number and the imaginary part -_ is the amplification rate."
l

Once the perturbation velocity _ is known, the other perturbation com-

ponents _, to', w=, wy, _= can be found. These llve components are nondi-
I

mensionalized as follows:

_,= _ _,= _ I
_--=, ---,U=

_'= _'z ~, _'T,71 _ _'=_'_ (B.3b) IO,,,ta="" -- _ _--. --- --"U® "" _ "/" _7®"

First the _y vorticlty transport equation (Equation 3.68) known as Squlre's equa- I

tion must be solved. Squlre's equation is found by considering a procedure anal- i

ogous to the Orr-Sommerfeld equation. The three-dimensional travelling wave

ansatz is again used for all components and after linearizing the following equa- I
tion results:

!
!
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I This t,-J.'..,_ry differential equation for _y(_ contains a forcing term on the right

hand side. Once Equation (B.4) is solved for _,(_ the remaining flow components

I can be calculated. First the • perturbation velocity is calculated using the u

i Poisson equation (3.71), or

Th_ _' perturbation velocity is calculated next from the w Poisson equation (3.73):

1[ 8_(_ i_,(_] (B.6)

I Finally, the _ and _ vorticities are calculated using the v Poisson equation (3.72)

I and the zero vorticity divergence condition (3.70) so that

and

I _.(_=_[i_O_'(Y-')+i_V'_,(_] (B,8)

where

II _ _(_ _2_(v_).= 09=

I Once the d_enfunctions are computed, the more convenient form of am-

I plRude and phase distributions are calculated, e.g.,

A., = V/(t_ ['_(_1)= 4-(_ ['_(_])= (B.9)

I (_[$(_]) (B.IO)_, = tan-1 _[,_(_1 •

I Expressions analogcus to (B.9) and (B.10) hold for all other flow components.

I Since (B.I) is an eigenvalue problem, any constant muRip]e of Equation (B.2)
is also a solution. Therefore, tLe perturbations can be scaled by any arbitrary

!
I
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amplitude. For comparison with the Navier--Stokes solution of this work (for the I

unheated boundary layer only), a scale factor cr.ST was introduced in Chapter 6.

The nondimensionalization of the Navier-Stokes equations is different than that I

used for the Orr-Sommerfeld equation. The proper conversions are shown below, I
including the scale factor:

Re6t _ Re6t Re_t - I

Re_, -. Re Re Re -

_=-KT" a=R--_,,_' _=_-;d,"5' _=R--_6,_' [[
u' = c_ST _, v' = cLSr V_e _', w' = CLSr _',

v"a"_,,, Re_, , v"RT_,(B.n) II_"=_LST_ , _,=cz,sTRe_," _,=q,srae6-'-T""

The solution technique applied to (B.1) is a direct fourth order finite I
difference method developed by Thomas (1953) and described in detail by Kurtz

and Crandal] (1962). A short description of the solution technique is given. The I

boundary conditions employed for Equation (B.1) are first shown. At the wall,

the no sllp condition and continuity equation are enforced: I

_(0)=0 (B.t2a) |
0'(0)=0. (U.12b)

Forthebound,-'ylayerpro_e,0(_ _ 1and0"(_ _ 0_ _"--.oo.TheO=- |

$ommerfeld equation (B.1) thus becomes I

The general solution of this equation is I

_(_ = Ae -_y + Be +_ + C e-_v + De +_v, (B.14) I
where

!
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+iRe,,

but by physical considerations e --, 0 as _--, oo and generally I_1 >> _1- These

considerations yield the following gradient conditions:

¢,'(ao) = -_¢(oo) (B.1fa)

= (s.15b)

The prime denotes differentiation with respect to _.

The finite difference equation system is of the form A g(#) = "_B g(#)

where A and B are complex matrices. An IMSL library routine EIGZC is used

to obtain the eigenvalues _ and eigenvectors _. Th_ most unstable e_.genvalue is

sought. Thus, given a _ = _,., _ = _,., Re,z, and an initial guess of _ = &,. + i _,,

Equation (B.1) with boundary conditions (B.12) and (B.15) is solved using the

direct method of Thomas (1953). The solution domain ,:oven, e.g., 0 < _ < 10.

Since the solution of the Orr-Sommerfeld equation gives the complex phase speed

/_ iteration is required to make F _ 0 where F = 7,7- _. A complex secant
Og

method is used to refine the iterates of _:

?,_ (B.lS)
where _i" denotes the iteration level.

The remaining equations for the other perturbation components are solved

with the same fourth order finite difference molecule for consistency. Boundary

vorticity. The following bound-conditions are needed for Equation (B.4) for the wy

ary conditions are consistent with those presented in Chapter 4:

_v(0) =0 (B.19a)

_,(co)= 0. (B.19b)

The remainingperturbationcomponents axe computed directlyfrom the corre-

spondingequations.
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